Skip to main content

Quantum jumps revisited: An overview of quantum trajectory theory

  • Conference paper
  • First Online:
Quantum Future From Volta and Como to the Present and Beyond

Part of the book series: Lecture Notes in Physics ((LNP,volume 517))

Abstract

The quantum trajectory theory of photon scattering in quantum optics is reviewed. Two features of the theory which bear closely on issues of interpretation in quantum mechanics are emphasized: (1) there exist different unravellings of a scattering process which reveal complementary aspects of the dynamics in the interaction region, and (2) through the making of records via a stochastic implementation of a formalized quantum jump a self-consistent interface between a quantum evolution (in Hilbert space) and a classical evolution for the records (time series of real numbers) is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N. Bohr, H. A. Kramers, and J. C. Slater, Phil. Mag. 47, 785 (1924); Zs. f. Phys. 24, 69 (1924)

    Google Scholar 

  • J. C. Slater, Nature 113, 307 (1924)

    Article  ADS  Google Scholar 

  • H. J. Carmichael, Phys. Rev. A 56, 5065 (1997).

    Article  ADS  Google Scholar 

  • See for example the articles by E. Schrödinger, H. Everett III, and E. Wigner in Quantum Theory of Measurement, edited by J. A. Wheeler and W. H. Zurek (Princeton University Press, Princeton, 1983), pp. 152–167, 315–323, 324–341.

    Google Scholar 

  • G. C. Hegerfeldt and T. S. Wilser, in Classical and Quantum Systems: Foundations and Symmetries, Proceedings of the II International Wigner Symposium, Golsar, Germany, 1991, edited by H. D. Doebner, W. Scherer, and F. Schroeck (World Scientific, Singapore, 1992), pp. 104–115.

    Google Scholar 

  • J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).

    Article  ADS  Google Scholar 

  • R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A 45, 4579 (1992).

    Article  ADS  Google Scholar 

  • H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics: New Series m: Monographs, Vol. m18 (Springer, Berlin, 1993).

    MATH  Google Scholar 

  • N. Gisin and I. C. Percival, in Experimental Metaphysics, edited by R. S. Cohen et al. (Kluwer, 1997), pp. 73–90.

    Google Scholar 

  • Ph. Blanchard and A. Jadczyk, Ann. Physik 4, 583 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994).

    MATH  Google Scholar 

  • L. Mandel, Proc. Phys. Soc. 72, 1037 (1958).

    Article  ADS  Google Scholar 

  • R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963); Phys. Rev. 130, 2529 (1963); 131, 2766 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  • P. L. Kelly and W. H. Kleiner, Phys. Rev. 136, A316 (1964).

    Google Scholar 

  • H. J. Carmichael, J. Opt. Soc. Am. B 4, 1588 (1987), Appendix A.

    Article  ADS  Google Scholar 

  • H. J. Carmichael, S. Singh, R. Vyas, and P. R. Rice, Phys. Rev. A 39, 1200 (1989).

    Article  ADS  Google Scholar 

  • Write (5) as \(\dot \rho\)= Lρ with L ≡ L0 + L a I + L b I , where L 0 (i/)(H B · − · H B ), L a I ≡ 2κ a a · a†, and L b I b · b†. The Dyson series is then developed with L0 as the free propagator and L a I and L b I treated as interaction terms.

    Google Scholar 

  • A. Barchielli, Quantum Opt. 2, 423 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  • H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 1652 (1993).

    Article  ADS  Google Scholar 

  • W. H. Zurek, in Physics Today, October 1991, pp. 36–44; several responses to this article appear in Letters to the Editor, Physics Today, April 1993.

    Google Scholar 

  • D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory, (Springer, Berlin, 1996).

    MATH  Google Scholar 

  • H. J. Carmichael, P. Kochan, and L. Tian, in Coherent States: Past, Present, and Future, edited by D. H. Feng, J. R. Klauder, and M. R. Strayer (World Scientific, Singapore, 1994), pp. 75–91.

    Google Scholar 

  • H. J. Carmichael, in Quantum Optics VI, edited by D. F. Walls and J. D. Harvey (Springer, Berlin, 1994).

    Google Scholar 

  • K. Banaszek and P. L. Knight, Phys. Rev. A 55, 2368 (1997).

    Article  ADS  Google Scholar 

  • T. Felbinger, S. Schiller, and J. Mlynek, Phys. Rev. Lett. 80, 492 (1998).

    Article  ADS  Google Scholar 

  • A review of recent work in cavity QED appears in Cavity Quantum Electrodynamics, edited by P. R. Berman (Academic Press, Boston, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philippe Blanchard Arkadiusz Jadczyk

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Carmichael, H.J. (1999). Quantum jumps revisited: An overview of quantum trajectory theory. In: Blanchard, P., Jadczyk, A. (eds) Quantum Future From Volta and Como to the Present and Beyond. Lecture Notes in Physics, vol 517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105336

Download citation

  • DOI: https://doi.org/10.1007/BFb0105336

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65218-2

  • Online ISBN: 978-3-540-49482-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics