Skip to main content

Transition to chaos in models of genetic networks

  • Conference paper
  • First Online:
  • 515 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 527))

Abstract

Randomly constructed networks of N elements governed by piecewise linear differential equations have been proposed as models for neural and genetic networks. In this model an element is labelled “on” if it is above a threshold, and “off” otherwise. For each element, there is a rule (truth table) specified by the values of K input elements that determines whether it will switch its state (from 1 to 0 or from 0 to 1) at some future time. Previous studies of these networks have demonstrated the existence of steady state, periodic, and chaotic attractors. The probability that the output in a truth table for a given gene is 1 (or 0), corresponding to an increased tendency for a gene’s activity to be repressed or expressed, is designated as p. Recent studies have demonstrated a transition from steady states to chaotic dynamics, with an intervening region of periodic dynamics, when p is decreased from 1.0 to 0.5. A probabilistic model of the dynamics yielded a critical relation between p and K that separates steady state behaviour from deterministic chaos. Here we present numerical data supporting the theoretical prediction of the relation between critical values of p and K. We also present numerical evidence for the existence of extremely long transients.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Fodor, L. Read, M. Pirrung, L. Stryer, A. Lu, D. Solas, Science, 251, (1991).

    Google Scholar 

  2. S. A. Kauffman, J. Theor. Biol., 22, 437 (1969)

    Article  MathSciNet  Google Scholar 

  3. S. A. Kauffman Origins of Order: Self-Organization and Selection in Evolution (Oxford University Press, Oxford, 1993).

    Google Scholar 

  4. L. Glass, J. Chem. Phys. 63, 1325 (1975)

    Article  ADS  Google Scholar 

  5. L. Glass and J. Pasternack, J. Math. Biol., 6, 207 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Thomas and R. D. Àri, Biological Feedback (CRC Press, Boca Raton, 1990).

    MATH  Google Scholar 

  7. T. Mestl, E. Plahte and S. W. Omholt, J. Theor. Biol., 176, 291 (1995)

    Article  Google Scholar 

  8. T. Mestl, E. Plahte and S. W. Omholt, Dyn. Stab. Systems, 2, 179 (1995).

    MathSciNet  Google Scholar 

  9. R. J. Bagley and L. Glass, J. Theor. Biol., 183, 269 (1996).

    Article  Google Scholar 

  10. T. Mestl, C. Lemay, and L. Glass, Physica 98 D, 35 (1996).

    MathSciNet  Google Scholar 

  11. T. Mestl, R. J. Bagley, and L. Glass, Phys. Rev. Letts., 79, 653 (1997).

    Article  ADS  Google Scholar 

  12. L. Glass and C. Hill, Europhys. Lett., 41, 6 (1998)

    Article  Google Scholar 

  13. B. Derrida and Y. Pomeau, Europhys. Lett., 1, 45 (1986)

    Article  ADS  Google Scholar 

  14. B. Derrida and Y. Pomeau, Europhys. Lett. 2, 739 (1986).

    Article  ADS  Google Scholar 

  15. B. Derrida, Phil. Mag., 56, 917, 1987.

    Article  Google Scholar 

  16. H. Flyvbjerg, J. Phys. A: Math. Gen., 21, L955 (1988).

    Google Scholar 

  17. G. Weisbuch, Complex Systems Dynamics (Addison-Wesley, Redwood City, 1991).

    Google Scholar 

  18. U. Bastolla and G. Parisi, Physica D, 98, 1 (1996); J. Theor. Biol. 187, 117 (1997).

    Article  MATH  Google Scholar 

  19. A. Bhattacharjya and S. Liang, Phys. Rev. Letts., 77, 1644 (1996); Physica D, 95, 29 (1997).

    Article  ADS  Google Scholar 

  20. B. Luque and R. V. Solé, Phys. Rev. E, 55, 257 (1997).

    Article  ADS  Google Scholar 

  21. The Lyapunov number can be explicitly evaluated numerically using techniques in E. Ott, Chaos in Dynamical Systems (Cambridge, 1993), Chapter 4.

    Google Scholar 

  22. S. Harris, B. Sawhill, A. Wuensche, and S. Kauffman Santa Fe preprints, (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. Reguera J.M.G. Vilar J.M. Rubí

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Hill, C., Sawhill, B., Kauffman, S., Glass, L. (1999). Transition to chaos in models of genetic networks. In: Reguera, D., Vilar, J., Rubí, J. (eds) Statistical Mechanics of Biocomplexity. Lecture Notes in Physics, vol 527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105022

Download citation

  • DOI: https://doi.org/10.1007/BFb0105022

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66245-7

  • Online ISBN: 978-3-540-48486-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics