Skip to main content

From membranes to membrane machines

  • Conference paper
  • First Online:
Statistical Mechanics of Biocomplexity

Part of the book series: Lecture Notes in Physics ((LNP,volume 527))

Abstract

On the micrometer scale, the behavior of membranes and vesicles can be understood, to a large extent, in terms of a few parameters. Two of these parameters, which are crucial for the membrane morphology, are the vesicle volume and the preferred or ‘spontaneous’ curvature of the membrane.1 The volume is primarily determined by the osmotic conditions, i.e., by the concentration of solutes such as ions, molecules, and colloids which are dispersed in the aqueous solution and which cannot permeate the membrane. These particles can also be used to change the ‘spontaneous’ curvature in a systematic and controlled fashion. Another local control mechanism for this curvature is provided by molecules which are attached to the membranes via hydrophobic anchors. These control mechanisms might be used in order to construct membrane machines such as swimming vesicles which are based on cycles in shape space.

Here and below, ‘spontaneous’ appears in quotes since this curvature often arises from the interactions of the membrane with its surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vol. 1 of Handbook of biological physics edited by Lipowsky, R. and Sackmann, E. (Elsevier, Amsterdam, 1995)

    MATH  Google Scholar 

  2. Lipowsky, R. (1995): Current Opinion in Structural Biology 5, 531; and in Vol. 23 of Encyclopedia of Applied Physics, edited by Trigg, G. L. (Wiley-VCH Verlag, 1998) p. 199

    Article  Google Scholar 

  3. Helfrich, W. (1973): Z. Naturforsch. 28c, 693

    Google Scholar 

  4. Willmore, T. (1982): Total curvature in Riemannian geometry (Ellis Horwood, Chicester)

    MATH  Google Scholar 

  5. Seifert, U., Berndl, K., and Lipowsky, R. (1991): Phys. Rev. A 44, 1182

    Article  ADS  Google Scholar 

  6. Miao, L., Seifert, U., Wortis, M., and Döbereiner, H. G. (1994): Phys. Rev. E 49, 5389

    Article  ADS  Google Scholar 

  7. Döbereiner, H. G. (1995): Ph.D. Thesis, Simon Fraser University

    Google Scholar 

  8. Seifert, U. (1997): Adv. Phys. 46, 13

    Article  ADS  Google Scholar 

  9. Lipowsky, R. and Döbereiner, H. G. (1998): Europhys. Lett. 43, 219

    Article  ADS  Google Scholar 

  10. Döbereiner, H. G., Selchow, O. and Lipowsky, R.: Europ. Biophys. J. (in press)

    Google Scholar 

  11. Asakura, A. and Oosawa, F. (1958): J. Polymer Sci. 33, 183

    Article  ADS  Google Scholar 

  12. Eisenriegler, E., Hanke, A. and Dietrich, S. (1996): Phys. Rev. E 54, 1134

    Article  ADS  Google Scholar 

  13. Yaman, K. Pincus, P. and Marques, C. (1997): Phys. Rev. Lett. 78, 4514

    Article  ADS  Google Scholar 

  14. Lyklema, J. (1995): Fundamentals of Interface and Colloid Science II: Solid-Liquid Interfaces (Academic Press, London)

    Google Scholar 

  15. Lipowsky, R., Döbereiner, H. G., Hiergeist, C. and Indrani, V. (1998): Physica A 249, 536

    Article  Google Scholar 

  16. Dinsmore, A., Wong, D., Nelson, P. and Yodh, A. (1998): Phys. Rev. Lett. 80, 409

    Article  ADS  Google Scholar 

  17. Dietrich, D., Angelova, M. and Pouligny, B. (1997): J. Phys. II France 7, 1651

    Article  Google Scholar 

  18. Lipowsky, R. (1995): Europhys. Lett. 30, 197

    Article  ADS  Google Scholar 

  19. Hiergeist, C., Indrani, V. and Lipowsky, R. (1996): Europhys. Lett. 36, 491

    Article  ADS  Google Scholar 

  20. Simon, J., Kühner, M., Ringsdorf, H. and Sackmann, E. (1995): Chem. Phys. Lipids 76, 241

    Article  Google Scholar 

  21. Döbereiner, H.G., Lehmann, A., Goedel, W., Selchow, O. and Lipowsky, R. (1997): Proc. MRS Meeting, Boston

    Google Scholar 

  22. de Gennes, P.-G. (1979): Scaling concepts in polymer physics (Cornell University Press, Ithaca)

    Google Scholar 

  23. Eisenriegler, E. (1993): Polymers near surfaces (World Scientific, Singapore)

    MATH  Google Scholar 

  24. Ball, R., Blunt, M. and Barford, W. (1989): J. Phys. A: Math. Gen. 22, 2587

    Article  ADS  Google Scholar 

  25. de Gennes, P.-G. (1990): J. Phys. Chem. 94, 8407

    Article  Google Scholar 

  26. Brooks, J., Marques, C. and Cates, M. (1991): J. Physique II 1, 673

    Article  ADS  Google Scholar 

  27. Lipowsky, R. (1992): J. Phys. II France 2, 1825

    Article  Google Scholar 

  28. Jülicher, F. and Lipowsky, R. (1996): Phys. Rev. E 53, 2670

    Article  ADS  Google Scholar 

  29. Purcell, E. M. (1977): Am. J. Phys. 45, 3

    Article  ADS  Google Scholar 

  30. Petrov, P. G and Döbereiner, H. G., in preparation

    Google Scholar 

  31. Brochard, F. and Lennon, J. (1975): J. Physique 36, 1035

    Article  Google Scholar 

  32. Kraus, M., Wintz, W., Seifert, U. and Lipowsky, R. (1996): Phys. Rev. Lett. 77, 3685

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. Reguera J.M.G. Vilar J.M. Rubí

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Lipowsky, R. (1999). From membranes to membrane machines. In: Reguera, D., Vilar, J., Rubí, J. (eds) Statistical Mechanics of Biocomplexity. Lecture Notes in Physics, vol 527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105003

Download citation

  • DOI: https://doi.org/10.1007/BFb0105003

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66245-7

  • Online ISBN: 978-3-540-48486-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics