Skip to main content

Molecular evolutionary dynamics

  • Conference paper
  • First Online:
Book cover A Perspective Look at Nonlinear Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 503))

  • 182 Accesses

Abstract

Evolutionary dynamics, especially dynamics on bio-molecular scale, bear inherent nonlinear properties. We analyze these dynamics of evolution by subdividing it in less sophisticated processes: population dynamics, population-support dynamics, and genotype-phenotype mapping. Molecular evolutionary biology provides a sufficiently simple experimental setup for a quantitative analysis of these subsystems. RNA secondary structures serve as model of reasonable phenotype mapping. Preimages of these mappings reveal neutral behavior and percolate genotype-space as so called neutral networks. The spatial organization of these networks significantly determine evolutionary dynamics: By stochastic flow transitions between two networks (two phenotypes) take place, by neutral drift better phenotypes are explored and evolutionary optimization towards a global maximum is possible, and by diffusion complex dynamical units (such as hypercycles) are competitive against parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. J. Bagley and J. D. Farmer. (1992): Spontaneous emergence of a metabolism. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, volume X of Santa Fe Institute Studies in the Science of Complexity, chapter Origin/Self-Organization, pages 93–141. Addison Wesley, Redwood City.

    Google Scholar 

  • R. J. Bagley, J. D. Farmer, and W. Fontana. (1992): Evolution of a metabolism. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, volume X of Santa Fe Institute Studies in the Science of Complexity, chapter Origin/Self-Organization, pages 141–158. Addison Wesley, Redwood City.

    Google Scholar 

  • M. C. Boerlijst and P. Hogeweg. (1991): Spiral wave structure in pre-biotic evolution: Hypercycles stable against parasites. Physica D, 48, 17–28.

    Article  MATH  ADS  Google Scholar 

  • M. B. Cronhjort and C. Blomberg. (1994): Hypercycles versus parasites in a two dimensional partial differential equations model. J. theor. Biol., 169, 31–49.

    Article  Google Scholar 

  • B. Derrida. (1981): Random-energy model: An exactly solvable model of disorderes systems. Phys. Rev. B, 24(5), 2613–2626.

    Article  ADS  MathSciNet  Google Scholar 

  • B. Derrida and L. Peliti. (1991): Evolution in a flat fitness landscape. Bull. Math. Biol., 53, 355–382.

    MATH  Google Scholar 

  • T. Dobzhansky. (1973): Nothing in biology makes sense expect in the light of evolution. Am. Bio. Teacher, 35, 125–129.

    Google Scholar 

  • M. Eigen. (1971): Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften, 10, 465–523.

    Article  ADS  Google Scholar 

  • M. Eigen, J. McCaskill, and P. Schuster. (1988): Molecular Quasi-Species. Journal of Physical Chemistry, 92, 6881–6891.

    Article  Google Scholar 

  • M. Eigen and P. Schuster. (1977): The hypercycle A: A principle of natural self-organization: Emergence of the hypercycle. Naturwissenschaften, 64, 541–565.

    Article  ADS  Google Scholar 

  • M. Eigen and P. Schuster. (1978): The Hpercycle B: The abstract hypercycle. Naturwissenschaften, 65, 7–41.

    Article  ADS  Google Scholar 

  • M. Feinberg. (1977): Mathematical aspects of mass action kinetics. In L. Lapidus and N. Amundson, editors, Chemical Reactor Theory, A Review, pages 1–78, Englewood Cliffs, NJ. Prentice-Hall Inc.

    Google Scholar 

  • W. Fontana and L. W. Buss. (1994): The arrival of the fittest: toward a theory of biological organization. Bull. Math. Biol, 56, 1–64.

    MATH  Google Scholar 

  • W. Fontana, W. Schnabl, and P. Schuster. (1989): Physical aspects of evolutionary optimization and adaption. Physical Review A, 40(6), 3301–3321.

    Article  ADS  Google Scholar 

  • W. Fontana and P. Schuster. (1987): A computer model of evolutionary optimization. Biophysical Chemistry, 26, 123–147.

    Article  Google Scholar 

  • C. V. Forst. (1996): Chaotic interactions of selfreplicating RNA. SFI Preprint 95-10-093, Computers Chem., 20(1), 69–84.

    Google Scholar 

  • C. V. Forst, C. Reidys, and J. Weber. (1995): Evolutionary dynamics and optimization: Neutral Networks as model-landscape for RNA secondary-structure folding-landscapes. In F. Morán, A. Moreno, J. Merelo, and P. Chacón, editors, Advances in Artificial Life, volume 929 of Lecture Notes in Artificial Intelligence, pages 128–147, Berlin, Heidelberg, New York. ECAL’ 95, Springer. Santa Fe Preprint 95-10-094.

    Google Scholar 

  • C. V. Forst, J. Weber, C. Reidys, and P. Schuster. Transitions and evolutive optimization in Multi Shape landscapes. in prep., (1995)

    Google Scholar 

  • G. Galilei. (1968): Opere, page 232. Babera, Firenze, Italy, A. Favaro edition. The original quotation reads: “...It (the great book of the universe) is written in the language of mathematics and its symbols are triangles, circles, ...”.

    Google Scholar 

  • M. Gebinoga. (1995): Hypercycles in biological systems. J. Endocyt. submitted.

    Google Scholar 

  • M. Gebinoga and F. Oehlenschläger. (1996): Comparison of self-sustained sequence replication reaction systems. Eur. J. Biochem., 235, 256–261.

    Article  Google Scholar 

  • D. Gillespie. (1977): Exact stochastic simulation of coupled chemical reactions. J. Chem. Phys., 81, 2340–2361.

    Article  Google Scholar 

  • R. W. Hamming. (1986): Coding and Information Theory. Prentice Hall, Englewood Cliffs.

    MATH  Google Scholar 

  • R. Hecht, R. Happel, P. Schuster, and P. F. Stadler. (1997): Autocatalytic networks with intermediates I: Irreversible reactions. Math. Biosc., 140, 33–74. Santa Fe Institute preprint 96-05-024.

    Article  MATH  MathSciNet  Google Scholar 

  • P. G. Higgs and B. Derrida. (1991): Stochastic models for species formation in evolving populations. J. Physics A, 24, L985–L991.

    Article  ADS  Google Scholar 

  • P. G. Higgs and B. Derrida. (1992): Genetic distance and species formation in evolving populations. J. Mol. Evol., 35, 454–465.

    Article  Google Scholar 

  • J. Hofbauer, P. Schuster, K. Sigmund, and R. wolff. (1980): Dynamical systems under constant organisation II: Homogeneous growth functions of degree p=2. Siam. J. Appl. Math., 38(2), 282–304.

    Article  MATH  MathSciNet  Google Scholar 

  • M. A. Huynen, P. F. Stadler, and W. Fontana. (1996): Smoothness withing ruggedness: The role of neutrality in adaption. Proc. Natl. Acad. Sci., 93, 397–401.

    Article  ADS  Google Scholar 

  • S. A. Kauffman. (1986): Autocatalytic sets of proteins. J. Theor. Biol., 119, 1–24.

    Article  Google Scholar 

  • S. Kopp, C. M. Reidys, and P. Schuster. (1996): Exploration of artificial landscapes based on random graphs. In F. Schweitzer, editor, Self-Organization of Complex Structures: From Individual to Collective Behavior, London, UK. Gordon and Breach.

    Google Scholar 

  • J. S. McCaskill. (1984): A localization threshold for macromolecular quasispecies from continuously distributed replication rates. J. Chem. Phys., 80, 5194–5202.

    Article  ADS  MathSciNet  Google Scholar 

  • M. Nowak and P. Schuster. (1989): Error tresholds of replication in finite populations, mutation frequencies and the onset of Muller's ratchet. Journal of theoretical Biology, 137, 375–395.

    Article  Google Scholar 

  • D. Park. (1988): The How and Why. An essay on the Origins and Development of Physical Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • S. Rasmussen, C. Knudsen, and R. Feldberg. (1991): Dynamics of programmable matter. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, volume X of Santa Fe Institute Studies in the Sciences of Complexity, pages 211–254, Redwood City. Addison Wesley.

    Google Scholar 

  • S. Rasmussen, E. Mosekilde, and J. Engelbrecht. (1989): Time of emergence and dynamics of cooperative gene networks. In P. Christiansen and R. Parmentier, editors, Structure, Coherence and Chaos in Dynamical Systems, Proceedings in Nonlinear Science, pages 315–331. Manchester University Press.

    Google Scholar 

  • C. Reidys. (1995): Neutral Networks of RNA Secondary Structures. PhD thesis, Friedrich Schiller Universität, Jena.

    MATH  Google Scholar 

  • C. Reidys, P. F. Stadler, and P. Schuster. (1997): Generic properties of combinatory maps and neutral networks of RNA secondary structures. Bull. Math. Biol., 59(2), 339–397.

    Article  MATH  Google Scholar 

  • W. Schnabl, P. F. Stadler, C. Forst, and P. Schuster. (1991): Full characterization of a strange attractor: Chaotic dynamics in low dimensional replicator systems. Physica D, 48, 65–90.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • P. Schuster. (1989): Optimization and complexity in molecular biology and physics. In P. J. Plath, editor, Optimal Structures in Heterogenous Reaction Systems, Synergetics. Springer Verlag.

    Google Scholar 

  • P. Schuster. (1995): Artificial life and molecular evolutionary biology. In F. Morán, A. Moreno, J. Merelo, and P. Chacón, editors, Advances in Artificial Life, Lecture Notes in Artificial Intelligence, Berlin, Heidelberg, New York. ECAL’ 95, Springer.

    Google Scholar 

  • P. Schuster. (1997): Genotypes with phenotypes: Adventures in an RNA toy world. Biophysical Chemistry. submitted, SFI-Preprint 97-04-036.

    Google Scholar 

  • P. Schuster and K. Sigmund. (1983): Replicator dynamics. J. theor. Biol., 100, 533–538.

    Article  MathSciNet  Google Scholar 

  • P. Schuster, K. Sigmund, and R. Wolff. (1978): Dynamical systems under constant organisation I.topologigal analysis of a family of non-linear differential equations — a model for catalytic hypercycles. Bull. Math. Biophys., 40, 743–769.

    MathSciNet  Google Scholar 

  • P. Schuster, K. Sigmund, and R. Wolff. (1979): Dynamical systems under constant organisation III.cooperative ond competitive behaviour of hypercycles. J. Diff. Equ., 32, 357–368.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Schuster and J. Swetina. (1988): Stationary mutant distributions and evolutionary optimization. Bull. Math. Biol., 50, 635.

    MATH  MathSciNet  Google Scholar 

  • S. Spiegelman. (1971): An approach to the experimental analysis of precellular evolution. Quart. Rev. Biophys., 17, 213.

    Article  Google Scholar 

  • P. F. Stadler and P. Schuster. (1992): Mutation in autocatalytic networks — an analysis based on perturbation theory. J. Math. Biol., 30, 597–631.

    Article  MATH  MathSciNet  Google Scholar 

  • C. Streissler. (1992): Autocatalytic Networks under Diffusion. PhD thesis, Universität Wien.

    Google Scholar 

  • J. Swetina and P. Schuster. (1982): Self-replication with errors — a model for polynucleotide replication. Biophys. Chem., 16, 329–345.

    Article  Google Scholar 

  • M. S. Waterman. (1978): Secondary structure of single — stranded nucleic acids. Studies on foundations and combinatorics, Advances in mathematics supplementary studies, Academic Press N.Y., 1, 167–212.

    MathSciNet  Google Scholar 

  • J. D. Watson and F. H. C. Crick. (1953): Molecular structure of nucleic acid. A structure for Desoxyribo Nucleic Acid. Nature, 171, 964–969.

    Article  ADS  Google Scholar 

  • J. Weber. (1997): Dynamics of Neutral Evolution — A case study on RNA secondary structures. PhD thesis, Friedrich Schiller Universität Jena.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jürgen Parisi Stefan C. Müller Walter Zimmermann

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Forst, C.V. (1998). Molecular evolutionary dynamics. In: Parisi, J., Müller, S.C., Zimmermann, W. (eds) A Perspective Look at Nonlinear Media. Lecture Notes in Physics, vol 503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104965

Download citation

  • DOI: https://doi.org/10.1007/BFb0104965

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63995-4

  • Online ISBN: 978-3-540-69681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics