Skip to main content

Randomly charged polymers

  • Conference paper
  • First Online:
Complex Behaviour of Glassy Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 492))

  • 106 Accesses

Abstract

Polyampholytes (PAs) are polymers with a random sequence of positive and negative charges along their backbone. We have studied systematically the dependence of internal energy and shape of the PA on its excess charge by combining analytic arguments, Monte Carlo simulations, and exact enumeration of all configurations of short chains. The results indicate that the overall excess charge, Q, is the main determinant of the size of the PA. A polymer composed of a mixture of N positive and negative charges ±qo, is compact for Q<Q cqoN, and expanded otherwise. The transition between the two states at low temperatures is reminiscent of the Rayleigh shape instability of a charged drop. A uniform excess charge causes the breakup of a fluid drop; we show that a uniformly charged polymer stretches out to a necklace shape. The inhomogeneities in charge distort the shape away from an ordered necklace. The freezing transition of a PA, and its relevance to proteins is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.G. de Gennes, Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca (1979).

    Google Scholar 

  2. M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore (1987).

    MATH  Google Scholar 

  3. D.L. Stein, Proc. Natl. Acad. Sci. USA 82, 3670 (1985)

    Article  ADS  Google Scholar 

  4. J.D. Bryngelson and P.G. Wolynes, Proc. Natl. Acad. Sci. USA 84, 7524 (1987)

    Article  ADS  Google Scholar 

  5. H.S. Chan and K.A. Dill, Physics Today 46(2), 24 (1993)

    Article  Google Scholar 

  6. T. Garel and H. Orland, Europhys. Lett. 6, 307 (1988)

    Article  ADS  Google Scholar 

  7. E.I. Shakhnovich and A.M. Gutin, Europhys. Lett. 8 327 (1989)

    Article  ADS  Google Scholar 

  8. M. Karplus and E.I. Shakhnovich, in Protein Folding, ed by T.E. Creighton, ch.4, p. 127, (Freeman & Co, New York, 1992).

    Google Scholar 

  9. D. Dressler and H. Potter, Discovering Enzymes, (Scientific American Library, NY, 1990).

    Google Scholar 

  10. J. Copart and F. Candau, Macromolecules 26, 1333 (1993)

    Article  ADS  Google Scholar 

  11. M. Scouri, J.P. Munch, S.F. Candau, S. Neyret, and F. Candau, Macromol. 27, 69 (1994).

    Article  ADS  Google Scholar 

  12. X.-H. Yu, A. Tanaka, K. Tanaka, and T. Tanaka, J. Chem. Phys. 97, 7805 (1992); Yu X.-H., Ph. D. thesis, MIT (1993)

    Article  ADS  Google Scholar 

  13. A. E. English, S. Mafe, J.A. Manzanares, X.-H. Yu, A. Yu. Grosberg, and T. Tanaka, J. Chem. Phys 104, 8713 (1996).

    Article  ADS  Google Scholar 

  14. Y. Kantor and M. Kardar, Europhys. Lett. 14, 421 (1991).

    Article  ADS  Google Scholar 

  15. Y. Kantor, H. Li, and M. Kardar, Phys. Rev. Lett. 69, 61 (1992)

    Article  ADS  Google Scholar 

  16. Y. Kantor, M. Kardar, and H. Li, Phys. Rev. E49, 1383 (1994).

    ADS  Google Scholar 

  17. Y. Kantor and M. Kardar, Europhys. Lett. 27, 643 (1994)

    Article  ADS  Google Scholar 

  18. Y. Kantor and M. Kardar, Phys. Rev. E51, 1299 (1995).

    ADS  Google Scholar 

  19. Y. Kantor and M. Kardar, Phys. Rev. E52, 835 (1995).

    ADS  Google Scholar 

  20. P.G. Higgs and J.-F. Joanny, J. Chem. Phys. 94, 1543 (1991)

    Article  ADS  Google Scholar 

  21. J. Wittmer, A. Johner and J.F. Joanny, Europhys. Lett. 24, 263 (1993).

    Article  ADS  Google Scholar 

  22. Lord Rayleigh, Phil. Mag. 14, 184 (1882).

    Google Scholar 

  23. G. Taylor, Proc. R. Soc. London A280 383 (1964).

    ADS  Google Scholar 

  24. J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics, ch. 7, p. 303, Willey, New York (1952)

    MATH  Google Scholar 

  25. R.D. Evans, The Atomic Nucleus, ch. 11, p. 387, McGraw-Hill, New York (1955).

    MATH  Google Scholar 

  26. N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

    Article  MATH  ADS  Google Scholar 

  27. E. Feenberg, Phys. Rev. 55, 504 (1939).

    Article  MATH  ADS  Google Scholar 

  28. F. Weizsacker, Naturwiss. 27, 133 (1939).

    Article  ADS  Google Scholar 

  29. A.V. Dobrynin, S.P. Obukhov, and M. Rubinstein, preprint (1995).

    Google Scholar 

  30. N. Lee and S.P. Obukhov, work in progress (1996); see http://www.phys.ufl.edu/∼nlee/research.html.

    Google Scholar 

  31. Y. Kantor and D. Ertaş, J. Phys. A27, L907 (1994).

    Google Scholar 

  32. B. Derrida, Phys. Rev. Lett. 45, 79 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  33. V.S. Pande, A.Yu. Grosberg, C. Joerg, M. Kardar, and T. Tanaka, preprint (1996).

    Google Scholar 

  34. V.S. Pande, A.Yu. Grosberg, and T. Tanaka, Proc. Nat. Acad. Sci. USA 91, 12976 (1994).

    Article  ADS  Google Scholar 

  35. M. Annaka and T. Tanaka, Nature 355, 430 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miguel Rubí Conrado Pérez-Vicente

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Kardar, M., Kantor, Y. (1997). Randomly charged polymers. In: Rubí, M., Pérez-Vicente, C. (eds) Complex Behaviour of Glassy Systems. Lecture Notes in Physics, vol 492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104841

Download citation

  • DOI: https://doi.org/10.1007/BFb0104841

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63069-2

  • Online ISBN: 978-3-540-69123-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics