Skip to main content

Polymer winding numbers and quantum mechanics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 492))

Abstract

The winding of a single polymer in thermal equilibrium around a repulsive cylindrical obstacle is perhaps the simplest example of statistical mechanics in a multiply connected geometry. As shown by S.F. Edwards, this problem is closely related to the quantum mechanics of a charged particle interacting with a Aharonov-Bohm flux. In another development, Pollock and Ceperley have shown that boson world lines in 2+1 dimensions with periodic boundary conditions, regarded as ring polymers on a torus, have a mean square winding number given by <W 2>=2n s ħ 2/mk B T, where m is the boson mass and n s is the superfluid number density. Here, we review the mapping of the statistical mechanics of polymers with constraints onto quantum mechanics, and show that there is an interesting generalization of the Pollock-Ceperley result to directed polymer melts interacting with a repulsive rod of radius a. When translated into boson language, the mean square winding number around the rod for a system of size R perpendicular to the rod reads \(\left\langle {W^2 } \right\rangle = \frac{{n_s \hbar ^2 }}{{2\pi mk_B T}}\ln (R/a)\). This result is directly applicable to vortices in Type II superconductors in the presence of columnar defects. An external current passing through the rod couples directly to the winding number in this case.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.F. Edwards, Proc. Phys. Soc. 91, 513 (1967) J. Phys. A1, 15 (1968).

    Article  MATH  ADS  Google Scholar 

  2. S. Prager and H.L. Frisch, J. Chem. Phys. 46, 1475 (1967).

    Article  ADS  Google Scholar 

  3. For a review, see A. Grossberg and A. Khoklov, in Advances in Polymer Science 106, 1 (1993).

    Article  Google Scholar 

  4. J. Rudnick and Y. Hu, J. Phys. A. Math. Gen. 20, 4421 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. E.L. Pollack and D.M. Ceperley, Phys. Rev. B36, 8843 (1987).

    ADS  Google Scholar 

  7. For a review, see D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

    Article  ADS  Google Scholar 

  8. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and V. Vinokur, Reviews of Modern Physics 66, 1125 (1994).

    Article  ADS  Google Scholar 

  9. D.R. Nelson and S. Seung, Phys. Rev. B39, 9153 (1989), D.R. Nelson and P. Le Doussal, Phys. Rev. B42, 10113 (1990).

    ADS  Google Scholar 

  10. B. Drossel and M. Kardar, Phys. Rev. E53, 5861 (1996); and cond-mat/96100119.

    ADS  Google Scholar 

  11. D.R. Nelson and V. Vinokur, Phys. Rev. B48, 13060 (1993).

    ADS  Google Scholar 

  12. Z. Yao, S. Yoon, H. Dai, S. Fan and C.M. Lieber, Nature 371, 777 (1995).

    Article  ADS  Google Scholar 

  13. We assume currents so small that the structure of the Bose glass state inside the tube is unaffected, due to the transverse Meissner effect[11]. For strong enough currents, the Bose glass in the tube may deform slightly, thus forming a repulsive chiral defect, similar to that discussed by Drossel and Kardar[10].

    Google Scholar 

  14. R.P. Feynman, Statistical Mechanics (Benjamin, Reading, MA, 1972).

    Google Scholar 

  15. R.P. Feynman, Phys. Rev. 91, 1291 (1953).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. P. Nozieres and D. Pines, The Theory of Quantum Liquids, vol. 2 (Addison-Wesley, Reading 1990).

    MATH  Google Scholar 

  17. D.R. Nelson and J.M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).

    Article  ADS  Google Scholar 

  18. See, e.g., R. Bellissent, L. Descotes and P. Pfeuty, Journal of Physics C6, Suppl. A211 (1994).

    Google Scholar 

  19. For reviews, see D.R. Nelson, Physica A177, 220 (1991); and

    ADS  Google Scholar 

  20. D.R. Nelson in Observation, Prediction and Simulation of Phase Transition in Complex Fluids, edited by Ml. Bans et al. (Kluwer, The Netherlands, 1995).

    Google Scholar 

  21. See, e.g., M.P.A. Fisher and D.H. Lee, Phys. Rev. B39, 2756 (1989).

    ADS  Google Scholar 

  22. P.G. deGennes, Superconductivity of Metals and Alloys (Addison-Wesley, Reading, MA 1989), chapter 2.

    Google Scholar 

  23. See., e.g., V.G. Kogan, Phys. Rev. B24, 1572 (1981).

    ADS  Google Scholar 

  24. U. Tauber and D.R. Nelson, submitted to Physics Reports.

    Google Scholar 

  25. A. Comtet, J. Desbois and S. Ouvry J. Phys. Math Gen. 23, 3563 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. A. Comtet, J. Desbois and C. Monthus J. Stat. Phys. 73, 433 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. B. Houchmandzadeh, J. Lajzerowicz and M. Vallade J. de Physique 1 2, 1881 (1992).

    Article  ADS  Google Scholar 

  28. D. Mahan, Many-Particle Physics (Plenum Press, New York 1981), sections (3.3) and (3.7).

    Google Scholar 

  29. By taking A(r)=const. in Eq. (52), one easily derives the Pollock-Ceperley formula (9) for bosons on a torus.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miguel Rubí Conrado Pérez-Vicente

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Nelson, D.R., Stern, A. (1997). Polymer winding numbers and quantum mechanics. In: Rubí, M., Pérez-Vicente, C. (eds) Complex Behaviour of Glassy Systems. Lecture Notes in Physics, vol 492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104834

Download citation

  • DOI: https://doi.org/10.1007/BFb0104834

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63069-2

  • Online ISBN: 978-3-540-69123-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics