Skip to main content

A solvable model of a glass

  • Conference paper
  • First Online:
Complex Behaviour of Glassy Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 492))

  • 131 Accesses

Abstract

An analytically tractable model is introduced which exhibits both, a glass-like freezing transition, and a collection of double-well configurations in its zero-temperature potential energy landscape. The latter are generally believed to be responsible for the anomalous low-temperature properties of glass-like and amorphous systems via a tunneling mechanism that allows particles to move back and forth between adjacent potential energy minima. Using mean-field and replica methods, we are able to compute the distribution of asymmetries and barrier-heights of the double-well configurations analytically, and thereby check various assumptions of the standard tunneling model. We find, in particular, strong correlations between asymmetries and barrier-heights as well as a collection of single-well configurations in the potential energy landscape of the glass-forming system — in contrast to the assumptions of the standard model. Nevertheless, the specific heat scales linearly with temperature over a wide range of low temperatures.

supported by a Heisenberg fellowship

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Anderson, B. Halperin, and S. Varma, Phil. Mag. 25, 1 (1972)

    Article  MATH  ADS  Google Scholar 

  2. Phillips, J. Low Temp. Phys. 7, 351 (1972)

    Article  ADS  Google Scholar 

  3. J. Jäckle, Z. Phys. 257, 212 (1972)

    Article  ADS  Google Scholar 

  4. S. Hunklinger and W. Arnold, in Physical Acoustics, edited by W.P. Mason and R.N. Thurston (Academic, New York, 1976) Vol. XII, p. 155

    Google Scholar 

  5. S. Hunklinger and A.K. Raychauduri, in Progress in Low Temperature Physics, edited by D.F. Brewer (Elsevier, Amsterdam, 1986) Vol. IX, p. 267

    Google Scholar 

  6. V.G. Karpov, M.I. Klinger, and F.N. Ignat’ev. Zh. Eksp. Teor. Fiz. 84, 760 (1983) [Sovj. Phys. JETP 57, 439 (1983)]

    Google Scholar 

  7. U. Buchenau, Yu.M. Galperin, V.L. Gurevich, D.A. Parshin, M.A. Ramos, and H.R. Schober, Phys. Rev. B46, 2798 (1992)

    Article  ADS  Google Scholar 

  8. A. Heuer and R.J. Silbey, Phys. Rev. Lett. 70, 3911 (1993)

    Article  ADS  Google Scholar 

  9. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975)

    Article  ADS  Google Scholar 

  10. S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17, 4384 (1978)

    ADS  Google Scholar 

  11. see also M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond, (World Scientific, Singapore, 1987)

    MATH  Google Scholar 

  12. J. Hopfield, Proc. Natl. Acad. Sci. USA, 81, 3088 (1984)

    Article  ADS  Google Scholar 

  13. R. Kühn, S. Bös, and J.L. van Hemmen, Phys. Rev. A 43, 2084 (1991)

    Article  ADS  Google Scholar 

  14. R. Kühn and S. Bös, J. Phys. A 26 831 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. S. Bös, PhD Thesis, Gießen (1993), unpublished

    Google Scholar 

  16. J.R.L. de Almeida and D.J. Thouless, J. Phys. A 11, 983 (1978)

    Article  ADS  Google Scholar 

  17. T. Kirkpatrick and D. Thirumalai, J. Phys. A22, L149 (1989)

    Google Scholar 

  18. J.P. Bouchaud and M. Mézard, J. Phys. I (France) 4, 1109 (1994)

    Article  Google Scholar 

  19. E. Marinari, G. Parisi, and F. Ritort, J. Phys. A27, 7615 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. ibid., 7647 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. J.P. Bouchaud, L. Cugiandolo, J. Kurchan, and M. Mézard, preprint cond-mat/9511042

    Google Scholar 

  22. G. Parisi, J. Phys. A13, L115 (1980)

    Google Scholar 

  23. G. Parisi, J. Phys. A13, 1101 (1980)

    ADS  Google Scholar 

  24. U. Horstmann and R. Kühn, in preparation

    Google Scholar 

  25. H. Sompolinsky and A. Zippelius Phys. Rev. B25, 6860 (1982)

    ADS  Google Scholar 

  26. M. Fannes, H. Spohn, and A. Verbeure, J. Math. Phys. 21, 355 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miguel Rubí Conrado Pérez-Vicente

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Kühn, R. (1997). A solvable model of a glass. In: Rubí, M., Pérez-Vicente, C. (eds) Complex Behaviour of Glassy Systems. Lecture Notes in Physics, vol 492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104824

Download citation

  • DOI: https://doi.org/10.1007/BFb0104824

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63069-2

  • Online ISBN: 978-3-540-69123-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics