Skip to main content

Computer simulation of models for the structural glass transition

  • Conference paper
  • First Online:
Book cover Complex Behaviour of Glassy Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 492))

  • 141 Accesses

Abstract

In order to test theoretical concepts on the glass transition, we investigate several models of glassy materials by means of Monte Carlo (MC) and Molecular Dynamics (MD) computer simulations. It is shown that also simplified models exhibit a glass transition which is in qualitative agreement with experiment and that thus such models are useful to study this phenomenon. However, the glass transition temperture as well as the structural properties of the frozen-in glassy phase depend strongly on the cooling history, and the extrapolation to the limit of infinitely slow cooling velocity is nontrivial, which makes the identification of the (possible) underlying equilibrium transition very difficult. In addition we demonstrate that microscopic properties are much stronger cooling rate dependent than macroscopic properties like the enthalpy or the density.

These points are exemplified with results for three types of models: The first one is a model for silica, a prototype of a strong glass former, the second is a Lennard-Jones model, which is a fragile glass former and the third is the bond-fluctuation model of polymer melts. For this third model we also review evidence for a growing correlation length at low temperatures resulting from finite size and surface effects. Furthermore we compute the configurational entropy of this lattice model as a function of temperature, which in turn allows us to perform a critical test of the Gibbs-di Marzio entropy theory. It is shown that the vanishing of the entropy in the latter theory gives a reasonable estimate of the glass transition region, but that the actual entropy stays positive down to zero temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Zallen The Physics of Amorphous Solids, (Wiley, New York, 1983).

    Book  Google Scholar 

  2. J. Jäckle, Rep. Progr. Phys. 49, 171 (1986).

    Article  ADS  Google Scholar 

  3. J. Zarzycki (ed.) Materials Science and Technology, Vol. 9, (VCH Publ., Weinheim, 1991).

    Google Scholar 

  4. W. Götze, in Liquids, Freezing and the Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin, (North-Holland, Amsterdam, 1990).

    Google Scholar 

  5. W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).

    Article  Google Scholar 

  6. A. J. Dianoux, W. Petry and D. Richter (eds.) Dynamics of Disordered Materials II, (North-Holland, Amsterdam, 1993).

    Google Scholar 

  7. K. L. Ngai (ed.) Proc. 2nd International Discussion Meeting on Relaxations in Complex Systems, J. Non-Cryst. Solids 172–174 (1994).

    Google Scholar 

  8. C. A. Angell, in this volume.

    Google Scholar 

  9. C. A. Angell, in: K. L. Ngai and G. B. Wright (eds.) Relaxation in Complex Systems, (US Dept. Commerce, Springfield, 1985).

    Google Scholar 

  10. H. Vogel, Phys. Z. 22, 642 (1921)

    Google Scholar 

  11. G. S. Fulcher, J. Amer. Ceram. Soc. 8, 339 (1925).

    Article  Google Scholar 

  12. R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847)

    Google Scholar 

  13. G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1980).

    Article  Google Scholar 

  14. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

    Article  ADS  Google Scholar 

  15. K. Binder and J. D. Reger, Adv. Phys. 41, 547 (1992).

    Article  ADS  Google Scholar 

  16. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Article  ADS  Google Scholar 

  17. C. Dasgupta, A. V. Indrani, S. Ramaswamy and M. K. Phani, Europhys. Lett. 15, 307 (1991).

    Article  ADS  Google Scholar 

  18. R. M. Ernst, S. R. Nagel and G. S. Grest, Phys. Rev. B43, 8070 (1991).

    ADS  Google Scholar 

  19. E. Donth, J. Non-Cryst. Solids 53, 325 (1982).

    Article  ADS  Google Scholar 

  20. E. W. Fischer, E. Donth and W. Steffen, Phys. Rev. Lett. 68, 2344 (1992).

    Article  ADS  Google Scholar 

  21. J. Jäckle, J. Phys.: Condens. Matter 8, 2733 (1996).

    Article  ADS  Google Scholar 

  22. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  ADS  Google Scholar 

  23. J. H. Gibbs, J. Chem. Phys. 25, 185 (1956).

    Article  ADS  Google Scholar 

  24. J. H. Gibbs and E. A. Di Marzio, J. Chem. Phys. 28, 373 (1958).

    Article  ADS  Google Scholar 

  25. E. A. Di Marzio and J. H. Gibbs, J. Chem. Phys. 28, 807 (1958).

    Article  ADS  Google Scholar 

  26. E. A. Di Marzio, J. H. Gibbs, P. D. Fleming III, and I. C. Sanchez, Macromolecules 9, 763 (1976).

    Article  ADS  Google Scholar 

  27. W. Kauzmann, Chem. Rev. 43, 219 (1948).

    Article  Google Scholar 

  28. G. B. McKenna, in: C. Booth and C. Price (eds.) Comprehensive Polymer Science, Vol. 2, (Pergamon Press, Oxford, 1990).

    Google Scholar 

  29. P. D. Gujrati, J. Phys. A 13, L437 (1980)

    Google Scholar 

  30. P. D. Gujrati and M. Goldstein, J. Chem. Phys. 74, 2596 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. I. Milchev, C. R. Acad. Bulg. Sci. 36, 1413 (1983).

    Google Scholar 

  32. H. P. Wittmann, J. Chem. Phys. 95, 8449 (1991).

    Article  ADS  Google Scholar 

  33. S. P. Das and G. F. Mazenko Phys. Rev A 34, 2265 (1986)

    ADS  Google Scholar 

  34. W. Götze and L. Sjögren, Z. Phys. B 65, 415 (1987).

    Article  Google Scholar 

  35. K. Vollmayr, W. Kob and K. Binder, Mainz University preprint KOMA-96-10;;K. Vollmayr and W. Kob, Ber. Bunsenges. Phys. Chem. (1996, in press).

    Google Scholar 

  36. B. W. van Beest, G. J. Kramer and R. A. van Santen, Phys. Rev. Lett. 64 1955, (1990).

    Article  ADS  Google Scholar 

  37. W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994); Phys. Rev. E 54, 4626 (1995); ibid. 52, 4134 (1995).

    Article  ADS  Google Scholar 

  38. W. Kob and M. Nauroth, in this volume; M. Nauroth and W. Kob, Mainz University preprint KOMA-96-20.

    Google Scholar 

  39. K. Vollmayr, W. Kob and K. Binder, p. 117 in Computer Simulation Studies in Condensed Matter Physics VIII, ed. D. P. Landau, K. K. Mon, and H. B. Schüttler, (Springer, Berlin, 1995).

    Google Scholar 

  40. K. Vollmayr, W. Kob and K. Binder, Europhys. Lett. 32, 715 (1995).

    Article  ADS  Google Scholar 

  41. K. Vollmayr, W. Kob and K. Binder, J. Chem. Phys. (1996, in press).

    Google Scholar 

  42. M. Wolfgardt, J. Baschnagel and K. Binder, J. Phys. II (Paris), 5, 1835 (1995).

    Google Scholar 

  43. H.-P. Wittmann, K. Kremer and K. Binder, J. Chem. Phys. 96, 6291 (1992).

    Article  ADS  Google Scholar 

  44. J. Baschnagel, K. Binder and H.-P. Wittmann, J. Phys.: Condens. Matter 5, 1597 (1993).

    Article  ADS  Google Scholar 

  45. J. Baschnagel and K. Binder, Physica A 204, 47 (1994).

    ADS  Google Scholar 

  46. B. Lobe, J. Baschnagel and K. Binder, Macromolecules 27, 3654 (1994).

    Article  ADS  Google Scholar 

  47. J. Baschnagel, Phys. Rev. B 49, 135 (1994).

    ADS  Google Scholar 

  48. J. Baschnagel and M. Fuchs, J. Phys.: Condens. Matter 7, 6761 (1995).

    Article  ADS  Google Scholar 

  49. M. Wolfgardt, J. Baschnagel and K. Binder, J. Chem. Phys. 103, 7166 (1995); M. Wolfgardt, J. Baschnagel, W. Paul and K. Binder, Phys. Rev. E (1996, in press).

    Article  ADS  Google Scholar 

  50. P. Ray and K. Binder, Europhys. Lett. 27, 53 (1994).

    Article  ADS  Google Scholar 

  51. J. Baschnagel and K. Binder, Macromolecules 28, 6808 (1995).

    Article  ADS  Google Scholar 

  52. J. Baschnagel and K. Binder, J. Phys. II (Paris), (1996, in press).

    Google Scholar 

  53. For a brief review, see K. Binder, Ber. Bunsenges. Phys. Chem. (1996, in press).

    Google Scholar 

  54. K. Binder (ed.) Monte Carlo and Molecular Dynamics Simulations in Polymer Science, (Oxford University Press, New York, 1995).

    Google Scholar 

  55. K. Binder, Makromol. Chem., Macromol. Symp. 50, 1 (1991).

    Google Scholar 

  56. J. S. Tse and D. D. Klug, Phys. Rev. Lett. 67, 3559 (1991)

    Article  ADS  Google Scholar 

  57. J. S. Tse, D. D. Klug and D. C. Allan, Phys. Rev. B 51, 16392 (1995), and references therein.

    ADS  Google Scholar 

  58. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, (Oxford University Press, Oxford, 1987).

    MATH  Google Scholar 

  59. H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    Article  ADS  Google Scholar 

  60. R. Brüning and K. Samwer, Phys. Rev. B 46, 11318 (1992).

    ADS  Google Scholar 

  61. G. S. Grest, C. M. Soukoulis and K. Levin, Phys. Rev. Lett. 56, 1148 (1986)

    Article  ADS  Google Scholar 

  62. D. A. Huse and D. S. Fisher, Phys. Rev. Lett. 57, 2203 (1986).

    Article  ADS  Google Scholar 

  63. C. A. Angell, J. Chem. Phys. Solids 49, 863 (1988).

    Article  ADS  Google Scholar 

  64. C. A. Angell, J. H. R. Clarke and L. V. Woodcock, Adv. Chem. Phys. 48, 397 (1981).

    Article  Google Scholar 

  65. J. Horbach, W. Kob, K. Binder and C. A. Angell, Mainz University preprint

    Google Scholar 

  66. W. Kob, p. 1 in Annual Reviews of Computational Physics, Vol. III, (ed.) D. Stauffer, (World Scientific, Singapore, 1995).

    Google Scholar 

  67. I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988)

    Article  ADS  Google Scholar 

  68. H.-P. Deutsch and K. Binder, J. Chem. Phys. 94, 2294 (1991).

    Article  ADS  Google Scholar 

  69. W. Paul, K. Binder, K. Kremer, and D. W. Heermann, Macromolecules 24, 6531 (1991)

    Article  Google Scholar 

  70. W. Paul and N. Pistoor, Macromolecules 27, 1249 (1994); V. Tries, W. Paul, and K. Binder, J. Chem. Phys. (1996, in press).

    Article  ADS  Google Scholar 

  71. D. Richter, B. Frick and B. Farago, Phys. Rev. Lett. 61, 2465 (1988)

    Article  ADS  Google Scholar 

  72. B. Frick, B. Farago and D. Richter, Phys. Rev. Lett. 64, 2921 (1990).

    Article  ADS  Google Scholar 

  73. J. M. G. Corrie and P. M. Toporowski, Eur. Polym. J. 4, 621 (1968).

    Article  Google Scholar 

  74. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, (Oxford University Press, Oxford, 1986).

    Google Scholar 

  75. K. Okun, J. Baschnagel, M. Wolfgardt and K. Binder, Mainz University preprint.

    Google Scholar 

  76. F. Stickel, E. W. Fischer and R. Richert, J. Chem. Phys. 102, 1 (1995).

    Article  Google Scholar 

  77. P. J. Flory, Proc. Roy. Soc. London, Series A, 234, 60 (1956).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miguel Rubí Conrado Pérez-Vicente

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Binder, K. et al. (1997). Computer simulation of models for the structural glass transition. In: Rubí, M., Pérez-Vicente, C. (eds) Complex Behaviour of Glassy Systems. Lecture Notes in Physics, vol 492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104815

Download citation

  • DOI: https://doi.org/10.1007/BFb0104815

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63069-2

  • Online ISBN: 978-3-540-69123-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics