Skip to main content

Entropy, fragility, “landscapes”, and the glass transition

  • Conference paper
  • First Online:
Complex Behaviour of Glassy Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 492))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angell, C. A., in Amorphous Insulators and Semiconductors, eds. M.F. Thorpe and M.I. Mitkova, NATO-ASI Series, Plenum Press (1997) pp. 1–20; and Angell, C. A., Proc. 1996 Enrico Fermi Summer School in Physics, Italian Physical Society, in press.

    Google Scholar 

  2. Angell, C. A., Poole P.H.m and Shao J., Nuovo Cimento 16D (1994) 993.

    Article  ADS  Google Scholar 

  3. Angell, C. A., Science 267 (1995) 1924.

    Article  ADS  Google Scholar 

  4. Palmer, R. J. and Stein, D. C., in Relaxations in Complex Systems, edited by K. Ngai and G.B. Wright (National technical Information Service, U.S. Department of Commerce, Springfield, VA 22161) 1985, p. 253.

    Google Scholar 

  5. McQuarrie, D. A., Statistical Mechanics (Harper & Row, New York) 1973, P. 554. The “ergodic hypothesis…states that for a stationary random process, a large number of observations made on a single systems at N arbitrary instants of time have the same statistical properties as observing N arbitrarily chosen systems at the same time from an ensemble of similar systems.”

    Google Scholar 

  6. Lu, Q., Velikov, V. and Angell, C.A. (to be published).

    Google Scholar 

  7. Kishimoto, K., Suga, H. and Seki, S., Bull. Chem. Soc. Japan 46 (1973) 3020.

    Article  Google Scholar 

  8. Moynihan, C. T., Macedo, P. B., Montrose, C. J., Gupta, P. K., DeBolt, M. A., Dill, J. F., Dom, B. E., Drake, P. W., Easteal, A. J., Elterman, P. B., Moeller, R. P., Sasabe, H. A. and Wilder, J. A., Anna. NY, Acad. Sci., 279, (1976) 15.

    Article  ADS  Google Scholar 

  9. Goldstein, M., Chem. Phys., 51 (1969) 3728.

    Article  ADS  Google Scholar 

  10. Suga, H. and Seki, S., Non-Cryst. Solids, 16 (1974) 171.

    Article  ADS  Google Scholar 

  11. Fujimori, H. and Oguni, M., J. Chem. Thermodynamics, 26 (1994) 367.

    Article  Google Scholar 

  12. Fujimori, H. and Oguni, M., Solid State Commun. 94 (1995) 157.

    Article  ADS  Google Scholar 

  13. Angell, C. A., J. Phys. Chem. Sol. 49 (1988) 863.

    Article  ADS  Google Scholar 

  14. Ediger, M. D., Angell, C. A. and Nagel, S. R., J. Phys. Chem. 100 (1996) 13200.

    Article  Google Scholar 

  15. Kauzmann, W., Chem. Rev. 43 (1948) 219.

    Article  Google Scholar 

  16. Angell, C. A., J. Non-Cryst. Sol. 131–133 (1991) 13.

    Article  Google Scholar 

  17. Sidebottom, D. and Torell, L., Phys. Rev. Lett. 71 (1993) 2260.

    Article  ADS  Google Scholar 

  18. Sokolov, A. P., Kislink, A., Soltwisch, M. and Quitmann, D., Physic. Rev. Lett. 69 (1992) 1540.

    Article  ADS  Google Scholar 

  19. While this is a frequently made observation, and one espoused over a long period by the present author [e.g. ref. 13 and C.A. Angell, J. Chem. Ed. 47, 583 (1970)], it was not the view of Kauzmann himself. Kauzmann ref. 15 preferred the possibility [based on the theoretical (and experimentally supported) idea that the size of the critical nucleus for transformation to the crystalline state decreases with decreasing temperature] that at low enough temperature the barrier would effectively disappear. In this case, the crystal state would be slowly established. We [C.A. Angell, D.R. MacFarlane, and M. Oguni, Ann. N.Y. Acad. Sci. 484 (1986) 241.] argued against this by showing that for certain cases it seemed that the relaxation time for evolution towards the equilibrated amorphous state would always be shorter than the transient nucleation time, but recently evidence has been presented that nucleation can occur by activity of the β-relaxation [T. Hikima, M. Hanaya and M. Oguni, Bull. Chem. Soc. Japan 69 (1996) 1863] which occurs on a much shorter time scale than that of the α-relaxation and which furthermore has an Arrhenius temperature dependence (see Fig. 7). In this case Kauzmann’s argument gains a new dimension of validity, and rather than an ideal glass, a cryptocrystalline state consisting of films of near-critical nuclei surrounding maximum density amorphous clusters might be the slow coiling limit for liquids.

    Google Scholar 

  20. Gibbs, J. H., in Modern Aspects of the Vitreous State, edited by J. D. McKenzie (Butterworths, London) 1960, ch. 7.

    Google Scholar 

  21. Gibbs, J. H. and Dimarzio, E. A., J. Chem. Phys. 28 (1958) 373.

    Article  ADS  Google Scholar 

  22. Adam, G. and Gibbs, J. H., J. Chem. Phys. 43 (1965) 139.

    Article  ADS  Google Scholar 

  23. Fujara, F., Geil, B., Sillescu, H. and Fleischer, G., Z. Phys. B88 (1992) 195.

    Article  ADS  Google Scholar 

  24. Rössler, E., Phys. Rev. Lett. 65 (1990) 1595.

    Article  ADS  Google Scholar 

  25. Rössler, E. and Sokolov, Chem. Geol. 128 (1996) 143; and

    Article  Google Scholar 

  26. Novikov, V. N., Rössler, E. Malinovsky, V. K. and Surovtev, N. V., Europhys. Lett. 35 (1996) 289.

    Article  ADS  Google Scholar 

  27. Laughlin, W. T. and Uhlmann, D. R., J. Phys. Chem. 76 (1972) 2317.

    Article  Google Scholar 

  28. Angell, C. A. and Tucker, J. C., in Chemistry of Process Metallurgy, Richardson Conference (Imperial College of Science, London, 1973), Eds., J. H. E. Jeffes and R. J. Tait, Inst. Mining Metallurgy Publ., (1974) 207.

    Google Scholar 

  29. Busch, R., Scheider, S., Peker, A. and Johnson, W:L., Appl. Phys. Lett. 67 (1995) 1544.

    Article  ADS  Google Scholar 

  30. Götze, W. in Liquids, Freezing, and the Glass Transition, Eds. Hansen, J.P. and Levesue, D., NATO-ASI, North Holand (Amsterdam) (Les Houches 1989) 287–503.

    Google Scholar 

  31. Du, W.M., Li, G., Cummins, H. Z., Fuchs, M., Toulouse, J. and Knauss, L.A., Phys. Rev. E 49 (1994) 2192

    Article  ADS  Google Scholar 

  32. Borjesson, L. and Howells, W.S., Non-Cryst. Solids 131–133 (1991) 53.

    Article  Google Scholar 

  33. Petry, W., Bartsch, E., Fujara, F., Kiebel, M. Sillescu, H., Farrago, B.Z., Phys. B 83 (1991) 175.

    Article  Google Scholar 

  34. Butler, S. and Harrowell, P., Chem. Phys. 95 (1991) 4466.

    Article  ADS  Google Scholar 

  35. Perrera, D. and Harrowell, P., Phys. Rev. E 54 (1996) 1652.

    Article  ADS  Google Scholar 

  36. Stillinger, F. S. and Weber, T., Science 225 983 (1984)

    Article  ADS  Google Scholar 

  37. Stillinger, F. S., Science 267 (1995) 1935.

    Article  ADS  Google Scholar 

  38. Kob, W. and Andersen, H.C., Phys. Rev. E 51 (1995) 4626; Kob, W. this volume.

    Article  ADS  Google Scholar 

  39. Angell, C. A., APS Symposium Procedings, J. Res. NIST (in press).

    Google Scholar 

  40. Speedy, R.J., Debenedetti, P.G., Mol. Phys. 88 (1996) 1293.

    Article  ADS  Google Scholar 

  41. Angell, C.A. and Tuker, J.C. (to be published)

    Google Scholar 

  42. Angell, C.A., Williams, E., Rao, K.J. and Tucker, J.C., J. Phys. Chem. 81 (1977) 238.

    Article  Google Scholar 

  43. Clarke, J.H.R., Trans. Far. Soc. 2 76 (1976) 1667.

    Google Scholar 

  44. Vollmayr, K., Kob, W. and Binder, K., Phys. Rev. B 54 (1996) 15808.

    Article  ADS  Google Scholar 

  45. Alba, C., Busse, L. E. and Angell, C. A., J. Chem. Phys. 92 (1990) 617–624.

    Article  ADS  Google Scholar 

  46. Angell, C. A., Boehm, L., Oguni, M. and Smith, D. L., J. Mol. Liquids 56 (1993) 275.

    Article  Google Scholar 

  47. Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S. Poate, J. M., Jacobson, D. C., Cullis, A. G. and Chew, N. G., Phys. Rev. Lett. 52 (1984) 2360.

    Article  ADS  Google Scholar 

  48. Aasland, S. and McMillan, P. F., Nature 369 (1994) 633.

    Article  ADS  Google Scholar 

  49. Poole, P. H., Sciortino, F., Essmann, U. and Stanley, H. E., Nature London 360 (1992) 324.

    Article  ADS  Google Scholar 

  50. Angell, C. A. Ann. Rev. Phys. Chem. 34 (1983) 593.

    Article  ADS  Google Scholar 

  51. Poole, P.H., Grande Tor, Angell, C.A. and McMillan, P.F., Science, in press (Jan. 1997)

    Google Scholar 

  52. Angell, C.A., Poole, P.H. and Shao, J., Nuovo Cimento 16D (1994) 993.

    Article  ADS  Google Scholar 

  53. Mohanty, U., Oppenheim, I. and Taubes, C. H., Science 266 (1994) 425.

    Article  ADS  Google Scholar 

  54. Privalko, Y., J. Phys. Chem. 84 (1980) 3307.

    Article  Google Scholar 

  55. Alba, C., Busse, L. E. and Angell, C. A., J. Chem. Phys. 92 (1990) 617.

    Article  ADS  Google Scholar 

  56. Stickel, F., Fischer, E. W. and Schönhals, A., Phys. Rev. Lett. 73 (1991) 2936.

    Article  ADS  Google Scholar 

  57. Stickel, F. and Fischer, E. W., Physica A 201 (1993) 263.

    Article  ADS  Google Scholar 

  58. Stickel, F., Fischer, E. W. and Richert, R., J. Chem. Phys. 104 (1996) 2043.

    Article  ADS  Google Scholar 

  59. Angell, C. A., Alba, C., Arzimanoglou, A., Böhmer, R., Fan, J., Lu, Q., Sánchez, E., Senapati, H. and Tatsumisago, M., Am. Inst. Phys. Conference Proceedings 256 (1992) 3.

    ADS  Google Scholar 

  60. Böhmer, R. and Angell, C. A., Phys. Rev. B. 45 (1992) 10091.

    Article  Google Scholar 

  61. Böhmer, R., Ngai, K. L., Angell, C. A. and Plazek, D. J., J. Chem. Phys. 99 (1993) 4201.

    Article  ADS  Google Scholar 

  62. Plazek, D.J. and Ngai, K.L., Macromolecules 24 (1991) 1222.

    Article  ADS  Google Scholar 

  63. Angell, C. A., Polymer (submitted).

    Google Scholar 

  64. Moynihan, C.T., Macebo, P.B., Montrose, C.J., Gupta, P.K., DeBolt, M.A., Dill, J.F., Dom, B.E., Drake, P.W., Easteal, A.J., Elterman, P.B., Moeller, R.P., Sasabe, H.A. and Wilder, J.A., Anna. NY, Acad. Sci. 2799 (1976) 15.

    Article  ADS  Google Scholar 

  65. Wong, J. and Angell, C.A., Glass: Structure by Spectroscopy Marcel Dekker, New York, New York (1976).

    Google Scholar 

  66. Johari, G.P. and Goldstein, M., J. Chem. Phys. 53 (1970) 2372; 55 (1971) 4245.

    Article  ADS  Google Scholar 

  67. Petry, W. et al. J. Phys. B. Condensed Matter 83 (1991) 175.

    Article  ADS  Google Scholar 

  68. Frick, B. and Richter, D., Science 267 (1995) 1939 (see Fig. 9).

    Article  ADS  Google Scholar 

  69. Götze, W. and Sjögren, L., J. Phys. C 21 (1988) 3407.

    Article  Google Scholar 

  70. Angell, C.A. (to be published). A preliminary account will appear in an overview paper by the author in Supercooled Liquids: Advances and Novel Applications, Ed. J. Fourkas, U. Mohanty, K. Nelson and D. Kivelson, ACS Symposium Series; ACS Books, Washington, D.C. 1997 (in press).

    Google Scholar 

  71. Hodge, I. M., J. Non-Cryst. Sol. 131–133 (1991) 435; and 169 (1994) 211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miguel Rubí Conrado Pérez-Vicente

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Angell, C.A. (1997). Entropy, fragility, “landscapes”, and the glass transition. In: Rubí, M., Pérez-Vicente, C. (eds) Complex Behaviour of Glassy Systems. Lecture Notes in Physics, vol 492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104814

Download citation

  • DOI: https://doi.org/10.1007/BFb0104814

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63069-2

  • Online ISBN: 978-3-540-69123-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics