Skip to main content

An introduction to the Hubbard model

  • Conference paper
  • First Online:
  • 953 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 478))

Abstract

In these notes we review some of the basic features of the 2D Hubbard model, thought of as the appropriate model for the description of the CuO planes in the cuprate superconductors. We discuss breifly the weakcoupling regime of the model and, in the opposite limit, the mapping of the one band Hubbard model onto an AFM Heisenberg model at half filling and onto the tJ model below half filling. We discuss next Emery’s three band model and its mapping onto the so-called “spin-fermion” model. Its continuum limit is discussed by making use of an adiabatic followed by a gradient expansion. We review briefly how the model maps onto a nonlinear sigma model and some of the features of the latter.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Hubbard, Proc. Roy. Soc. A276 (1963) 238; A277 (1964) 237; A281 (1964) 401.

    ADS  Google Scholar 

  2. N. W. Ashcroft and N. D. Mermin. Solid State Physics, (Saunders College, 1976).

    Google Scholar 

  3. A. P. Balachandran, E. Ercolessi, G. Morandi, A. M. Srivastava, The Hubbard Model and Anyon Superconductivity, Lect. Notes in Phys. 38 (World Scientific, 1990).

    Google Scholar 

  4. E. Ercolessi, G. Morandi and F. Ortolani, Mod. Phys. Lett. B6 (1992) 77.

    ADS  MathSciNet  Google Scholar 

  5. C. N. Yang, Phys. Rev. Lett 63 (1989) 2144

    Article  ADS  Google Scholar 

  6. C. N. Yang and S. C. Zhang. Mod. Phys. Lett. B4 (1990) 759

    ADS  Google Scholar 

  7. S. C. Zhang, Phys. Rev. Lett. 65 (1990) 120.

    Article  ADS  Google Scholar 

  8. N. D. Mermin and H. Wagner. Phys. Rev. Lett. 17 (1966) 1133.

    Article  ADS  Google Scholar 

  9. J. E. Hirsch, Phys. Rev. B28 (1983) 4059; B31, (1985) 4403.

    ADS  MathSciNet  Google Scholar 

  10. H. J. Schulz, Phys. Rev. Lett. 64 (1990) 1445

    Article  ADS  Google Scholar 

  11. A. R. Bishop, F. Guinea, P. S. Lomdhar, E. Louis and J. A. Vergès. Europh. Lett. 14 (1991) 157.

    Article  ADS  Google Scholar 

  12. M. Gutzwiller, Phys. Rev. A137 (1965) 1726.

    Article  ADS  MathSciNet  Google Scholar 

  13. K. A. Chao, J. P. Spalek and A.M. Oles, J. Phys. C 10 (1977) L271; Phys. Rev. B 18 (1978) 3453.

    Google Scholar 

  14. E. Galleani d'Agliano, G. Morandi and F. Napoli, in High Temperature Superconductivity. M¿ Acquarone ed. (World Scientific, 1996).

    Google Scholar 

  15. J. E. Hirsch, Phys. Rev. Lett 54 (1985) 1317

    Article  ADS  Google Scholar 

  16. C. Gros, R. Joynt and T. M. Rice, Phys. Rev. B36 (1987) 8190.

    Google Scholar 

  17. G. Baskaran and P.W. Anderson. Phys. Rev. B37 (1988) 580

    ADS  Google Scholar 

  18. G. Baskaran, Z. Zou and P. W. Anderson, Solid State Commun. 63 (1987) 973.

    Article  ADS  Google Scholar 

  19. P. Fazekas and P. W. Anderson, Phil. Mag. 30 (1974) 432

    Article  ADS  Google Scholar 

  20. C. Y. Huang and E. Manousakis. Phys. Rev. B36 (1987) 8302.

    ADS  Google Scholar 

  21. G. Kotliar, Phys. Rev. B37 (1988) 3664.

    ADS  Google Scholar 

  22. I. Affleck and J. Brad Marston, Phys. Rev. B37 (1988) 3744.

    ADS  Google Scholar 

  23. M. Di Stasio, E. Ercolessi, G. Morandi and A. Tagliacozzo, Phys. Rev. B49 (1994) 10908; Int. J. Mod. Phys. B8 (1994) 757

    Google Scholar 

  24. M. Di Stasio, E. Ercolessi, G. Morandi, A. Tagliacozzo and F. Ventriglia, Phys. Rev. B45 (1992) 1939, Int. J. of Mod. Phys. B7 (1993) 3281; Phys. Rev. B49 (1994) 10908; M. Di Stasio, E. Ercolessi, G. Morandi, J. Samuel. A. Tagliacozzo and G. P. Zucchelli, in Superconductivity and Strongly Correlated Electron Systems, A. Romano and G. Scapino ed.s (World Scientific, 1994).

    ADS  Google Scholar 

  25. J. W. Negele and H. Orland, Quantum Many-Particle Systems. (Addison Wesley, 1988)

    Google Scholar 

  26. R. Cenni, E. Galleani d'Agliano, F. Napoli, P. Saracco and M. Sassetti. Feynman Integrals in Theoretical, Nuclear and Statistical Physics, (Bibliopolis, Napoli 1989).

    MATH  Google Scholar 

  27. N. Read and S. Sachdev, Nucl. Phys. B316 (1989) 609.

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Kogut, Rev. Mod. Phys. 51 (1979) 659.

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Affleck, Z. Zou, T. Hsu and P. W. Anderson. Phys. Rev. B38 (1988) 745.

    ADS  Google Scholar 

  30. S. Liang, Phys. Rev. B42 (1990) 6555 and references therein.

    ADS  Google Scholar 

  31. V. J. Emery, Phys. Rev. Lett. 58 (1987) 2794.

    Article  ADS  Google Scholar 

  32. A. W. Sleight, High Temperature Superconductivity, Eds. D. P. Tunstall and W. Barford (Adam Hilger, 1991) p. 97

    Google Scholar 

  33. J. M. Tranquada, D. E. Cox, W. Kunnmann, H. Moudden, G. Shirane, M. Suenage and P. Zolliker, Phys. Rev. Lett. 60 (1988) 156.

    Article  ADS  Google Scholar 

  34. M. S. Hybertsen et al., Phys. Rev. B41 (1994) 11068

    ADS  Google Scholar 

  35. G. Dopf, A. Muramatsu and W. Hanke. Phys. Rev. B41 (1990) 9264.

    ADS  Google Scholar 

  36. A. Muramatsu, R. Zeyher and D. Schmelzer. Europhys. Lett. 7 (1988) 473.

    Article  ADS  Google Scholar 

  37. T. Aste, E. Galleani d'Agliano and F. Napoli, Physica C182 (1991) 307.

    ADS  Google Scholar 

  38. Z. B. Su, L. Yu, J. M. Dong and E. Tosatti, Z. Physik B70 (1988) 131.

    ADS  Google Scholar 

  39. M. V. Berry, Proc. Roy. Soc. A414 (1987) 31.

    ADS  MathSciNet  Google Scholar 

  40. M. Di Stasio, E. Ercolessi, G. Morandi, R. Righi, A. Tagliacozzo and G. P. Zucchelli, Int. J. of Mod. Phys. B8 (1994) 1391.

    ADS  Google Scholar 

  41. R. Bott and L. Tu, Differential Forms in Algebraic Topology (Springer. 1982)

    Google Scholar 

  42. G. Morandi, The Role of Topology in Classical and Quantum Physics (Springer, 1992).

    Google Scholar 

  43. M. V. Berry, Proc. Roy. Soc. A392 (1984) 45

    ADS  MathSciNet  Google Scholar 

  44. A. Shapere and F. Wilczek, Eds. Geometric Phases in Physics. World Scientific (1989).

    Google Scholar 

  45. E. Fradkin, Field Theories of Condensed Matter Systems. (Addison Wesley. 1991)

    Google Scholar 

  46. F. D. M. Haldane, Phys. Lett. 93A (1983) 464; Phys. Rev. Lett. 50 (1983)

    ADS  MathSciNet  Google Scholar 

  47. I. Affleck, Nucl. Phys. B257 (1985) 397.

    Article  ADS  MathSciNet  Google Scholar 

  48. I. Affleck, Strings, Fields and Critical Phenomena. Les Houches Summer School 1988, Eds. E. Brezin and J. Zinn-Justin, (North-Holland, 1990), J. Phys. Condens. Matter 1 (1989) 3047.

    Google Scholar 

  49. F. D. M. Haldane, Phys. Rev. Lett. 61 (1988) 1029

    Article  ADS  MathSciNet  Google Scholar 

  50. T. Dombre and N. Read, Phys. Rev. B38 (1988) 7181.

    ADS  MathSciNet  Google Scholar 

  51. S. Chakravarty, B. I. Halperin and D. R. Nelson, Phys. Rev. Lett., 60 (1988) 1957; Phys. Rev. B39 (1989) 2344.

    Article  ADS  Google Scholar 

  52. R. J. Birgeneau and G. Shirane. Physical Properties of High Temperature Superconductors, D. M. Ginsberg ed. (World Scientific. 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Germán Sierra Miguel A. Martín-Delgado

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Ercolessi, E., Morandi, G., Pieri, P. (1997). An introduction to the Hubbard model. In: Sierra, G., Martín-Delgado, M.A. (eds) Strongly Correlated Magnetic and Superconducting Systems. Lecture Notes in Physics, vol 478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104632

Download citation

  • DOI: https://doi.org/10.1007/BFb0104632

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62476-9

  • Online ISBN: 978-3-540-49734-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics