Advertisement

Harmonic superspace: key to N=2 supersymmetry theories

  • A. Gal’perin
  • E. Ivanov
  • V. Ogievetskiĭ
  • É. Sokachev
Selected Works And List Of Main Publications Of V.I. Ogievetsky
Part of the Lecture Notes in Physics book series (LNP, volume 524)

Abstract

The concept of a harmonic N=2 superspace with additional coordinates related to the SU(2)/U(1) sphere is introduced. This concept leads to an adequate geometric description of the N=2 theories of matter, the Yang-Mills theory, and supergravity in terms of superfields without coupling. A new effect has been discovered: the unboundedness of the number of gauge and auxiliary degrees of freedom.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Mezincescu, Preprint R2-12572, Joint Institute for Nuclear Research, Dubna, 1979.Google Scholar
  2. 2.
    P. S. Howe, K. S. Stelle, and P. K. Townsend, Preprint ICTP/82-83/20.Google Scholar
  3. 3.
    A. Salam and J. Strathdee, Ann. Phys. 141, 316 (1982).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    A. S. Gal’perin, E. A. Ivanov, and V. I. Ogievetskiĭ, Pis’ma Zh. Eksp. Teor. Fiz. 33, 176 (1981) [JETP Lett. 33, 168 (1981)].ADSGoogle Scholar
  5. 5.
    A. S. Gal’perin, E. A. Ivanov, and V. I. Ogievetskiĭ, Yad. Fiz. 35, 790 (1982) [Sov. J. Nucl. Phys. 35, 458 (1982)].Google Scholar
  6. 6.
    P. Fayet, Nucl. Phys. B113, 135 (1976).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. F. Sohnius, Nucl. Phys. B138, 109 (1978).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    P. S. Howe, K. S. Stelle, and P. K. Townsend, Nucl. Phys. B214, 519 (1983).CrossRefADSGoogle Scholar
  9. 9.
    S. Ferrara and B. Zumino, Nucl. Phys. B79, 413 (1974).ADSGoogle Scholar
  10. 10.
    R. Grimm, M. Sohnius, and J. Wess, Nucl. Phys. B133, 275 (1978).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A. Roslyĭ, in: Trudy Mezhdunarodnogo seminara Teoretiko-gruppovye metody v fizike [Zevenigorod, 1982) (Proceedings of the International Seminar on Group-Theory Methods in Physics), Vol. 1, Nuaka, Moscow, p. 263.Google Scholar
  12. 12.
    R. S. Ward, Phys. Lett. 61A, 81 (1977).ADSGoogle Scholar
  13. 13.
    V. Ogievetsky and E. Sokatchev, Phys. Lett. 79B, 222 (1978)ADSGoogle Scholar
  14. 13a.
    Yad. Fiz. 28, 1631 (1978) [Sov. J. Nucl. Phys. 28, 840 (1978)]Google Scholar
  15. 13b.
    31, 264 (1980) [Sov. J. Nucl. Phys. 31, 140 (1980)]Google Scholar
  16. 13c.
    W. Siegel and S. J. Gates, Nucl. Phys. B147, 77 (1979).CrossRefADSGoogle Scholar
  17. 14.
    E. S. Fradkin and M. A. Vasiliev, Phys. Lett. 85B, 47 (1979)ADSMathSciNetGoogle Scholar
  18. 14a.
    B. de Wit, J. W. Holten, and A. Van Proeyen, Nucl. Phys. B167, 186 (1980).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • A. Gal’perin
    • 1
    • 2
    • 3
  • E. Ivanov
    • 1
    • 2
    • 3
  • V. Ogievetskiĭ
    • 1
    • 2
    • 3
  • É. Sokachev
    • 1
    • 2
    • 3
  1. 1.Joint Institute for Nuclear ResearchUSSR
  2. 2.Institute of Nuclear PhysicsTashkent
  3. 3.Institute of Nuclear Research and Nuclear EnergySofia

Personalised recommendations