Advertisement

Higher-spin gauge theories — Integrability versus locality

  • Sergey Prokushkin
  • Mikhail Vasiliev
Quantum Field Theory And Quantum Groups
Part of the Lecture Notes in Physics book series (LNP, volume 524)

Abstract

We discuss properties of non-linear equations of motion which describe higher-spin gauge interactions for massive spin-0 and spin-1/2 matter fields in 2+1 dimensional anti-de Sitter space. An integrating flow is found which reduces the full non-linear system to the free field equations via a non-local Bäcklund-Nicolai-type mapping.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, JETP Lett. 40 (1984) 155Google Scholar
  2. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, Class. Quant. Grav. 1 (1984) 469.CrossRefADSMathSciNetGoogle Scholar
  3. V. I. Ogievetsky and I. V. Polubarinov, Yad. Fiz. 4 (1966) 216.Google Scholar
  4. Ch. Devchand and V. Ogievetsky, Nucl. Phys. B481 (1996) 188.ADSMathSciNetGoogle Scholar
  5. M. A. Vasiliev, Phys. Lett. B285 (1992) 225ADSMathSciNetGoogle Scholar
  6. M. A. Vasiliev, Nucl. Phys. B (Proc. Supplement) 56B (1997) 241–252.MATHCrossRefADSMathSciNetGoogle Scholar
  7. M. P. Blencowe, Class. Quant. Grav. 6 (1989) 443.CrossRefADSMathSciNetGoogle Scholar
  8. T. W. B. Kibble, J. Math. Phys. 2 (1961) 212.MATHCrossRefMathSciNetADSGoogle Scholar
  9. S. W. MacDowell and F. Mansouri, Phys. Rev. Lett. 38 (1977) 739.CrossRefADSMathSciNetGoogle Scholar
  10. K. Stelle and P. West, Phys. Rev. D21 (1980) 1466.ADSMathSciNetGoogle Scholar
  11. E. Witten, Nucl. Phys. B311 (1989) 46.ADSMathSciNetGoogle Scholar
  12. M.A. Vasiliev, Class. Quant. Grav. 11 (1994) 649.CrossRefADSMathSciNetGoogle Scholar
  13. M. A. Vasiliev, Int. J. Mod. Phys. D5 (1996) 763.ADSMathSciNetGoogle Scholar
  14. S. F. Prokushkin and M. A. Vasiliev, hep-th/9806236.Google Scholar
  15. M. A. Vasiliev, JETP Lett. 50 (1989), 374; Int. J. Mod. Phys. A6 (1991) 1115.ADSMathSciNetGoogle Scholar
  16. A. V. Barabanschikov, S. F. Prokushkin, and M. A. Vasiliev, Rus. Theor. Math. Phys. 110 (1997) 295, hep-th/9609034.MATHCrossRefGoogle Scholar
  17. M. A. Vasiliev, Class. Quantum Grav. 8 (1991) 1387.CrossRefADSMathSciNetGoogle Scholar
  18. M. A. Vasiliev, Ann. Phys. (N.Y.) 190 (1989) 59.MATHCrossRefADSMathSciNetGoogle Scholar
  19. S. E. Konstein and M. A. Vasiliev, Nucl. Phys. B331 (1990) 475.CrossRefADSMathSciNetGoogle Scholar
  20. E. Bergshoeff, B. de Wit, and M. A. Vasiliev, Nucl. Phys. B366 (1991) 315CrossRefADSGoogle Scholar
  21. E. S. Fradkin and M. A. Vasiliev, Phys. Lett. B189 (1987) 89.ADSGoogle Scholar
  22. R. R. Metsaev, Mod. Phys. Lett. A4 (1991) 359.ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Sergey Prokushkin
    • 1
  • Mikhail Vasiliev
    • 1
  1. 1.I.E. Tamm Department of Theoretical PhysicsLebedev Physical InstituteMoscowRussia

Personalised recommendations