Skip to main content

Inhomogeneous quantum liquids: Statics, dynamics, and thermodynamics

  • Conference paper
  • First Online:
Microscopic Quantum Many-Body Theories and Their Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 510))

Abstract

We review the variational theory for inhomogeneous Bose and Fermi fluids. Euler-Lagrange equations are derived for the one- and two-body correlations and systematic approximation methods are physically as well as formally motivated. For bosons, it is shown that the optimized variational method corresponds to a self-consistent approximate summation of ladder and ring diagrams. The connection between time-dependent Hartree theory and the equations of motion for strongly correlated Bose liquids is highlighted.

The finite-temperature extension of the boson theory is discussed. Drawing connections to the random phase approximation and linear response theory at finite temperatures, it is shown that present implementations of a finite-temperature version of variational theories are equivalent to a relatively simple quasiparticle description of the thermodynamics.

Building on the optimized ground states, we next develop the equations of motion method for the study of excitations and linear response in inhomogeneous Bose systems. For weakly interacting systems, the theory is equivalent to the Feynman theory of collective excitations in quantum liquids, or to the random phase approximation. When the interactions are strong, the theory amounts to a theory of effective interactions in which the strongly interacting system is mapped onto a weakly interacting one.

Finally, we turn to a systematic study of Fermi systems. It is shown how the choice of an optimal single-particle basis facilitates the formulation of Euler equations and improves the convergence of cluster expansion and integral equation methods. To interpret the Fermi theory, we develop a version of time-dependent Hartree-Fock theory for strongly interacting systems. Unlike time-dependent Hartree theory, new effects, in particular the particle-hole continuum, enter the description of the excited states. We highlight the close relationship between diagrams of the FHNC variational theory and the random phase approximation, and how the time-dependent theory can serve to improve upon the FHNC description of the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Feenberg, Theory of Quantum Liquids (Academic, New York, 1969)

    Google Scholar 

  2. E. Krotscheck and M.L. Ristig, Phys. Lett. A 48, 17 (1974)

    Article  ADS  Google Scholar 

  3. E. Krotscheck, Phys. Rev. A 15, 397 (1977)

    Article  ADS  Google Scholar 

  4. A.D. Jackson, Ann. Review Nucl. Part. Sci 33, 105 (1983)

    Article  ADS  Google Scholar 

  5. M.H. Anderson et al., Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  6. K.B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  7. C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  8. A.D. Jackson, A. Lande, and R.A. Smith, Phys. Rep. 86, 55 (1982)

    Article  ADS  Google Scholar 

  9. T. Wettig, Ph.D. thesis, State Univ. of New York, 1994

    Google Scholar 

  10. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Kohn and P. Vashishta, in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N.H. March (Plemum, New York, 1983), p. 79

    Google Scholar 

  12. M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)

    Article  ADS  Google Scholar 

  13. A.K. Kerman and S.E. Koonin, Ann. Phys. (NY) 100, 332 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. P. Kramer and M. Saraceno, Geometry of the Time-Dependent Variational Principle in Quantum Mechanics, Vol. 140 of Lecture Notes in Physics (Springer, Berlin, Heidelberg, and New York, 1981)

    Google Scholar 

  15. R.P. Feynman, Phys. Rev. 94, 262 (1954)

    Article  MATH  ADS  Google Scholar 

  16. R. de Bruyn Ouboter and C.N. Yang, Physica 144B, 127 (1986)

    Google Scholar 

  17. P.A. Whitlock, G.V. Chester, and M.H. Kalos, Phys. Rev. B 38, 2418 (1988)

    Article  ADS  Google Scholar 

  18. S. Giorgini, J. Boronat, and J. Casulleras, Phys. Rev. B 54, 6099 (1996)

    Article  ADS  Google Scholar 

  19. E. Krotscheck and M. Saarela, Phys. Rep. 232, 1 (1993)

    Article  ADS  Google Scholar 

  20. B.E. Clements, J.L. Epstein, E. Krotscheck, and M. Saarela, Phys. Rev. B 48, 7450 (1993)

    Article  ADS  Google Scholar 

  21. C.E. Campbell, K.E. Kürten, M.L. Ristig, and G. Senger, Phys. Rev. B 30, 3728 (1984)

    Article  ADS  Google Scholar 

  22. G. Senger, M.L. Ristig, K.E. Kürten, and C.E. Campbell, Phys. Rev. B 33, 7562 (1986)

    Article  ADS  Google Scholar 

  23. B. E. Clements, E. Krotscheck, J.A. Smith, and C.E. Campbell, Phys. Rev. B 47, 5239 (1993)

    Article  ADS  Google Scholar 

  24. C. E. Campbell and B.E. Clements, in Elementary Excitations in Quantum Fluids, Vol. 79 of Springer Series in Solid-State Sciences, edited by K. Ohbayashi and M. Watabe (Springer, New York, 1989), p. 8

    Google Scholar 

  25. T. Morita and K. Hiroike, Progr. Theor. Phys. 25, 537 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Krotscheck, Q.X. Qian, and W. Kohn, Phys. Rev. B 31, 4245 (1985)

    Article  ADS  Google Scholar 

  27. E. Krotscheck and M.L. Ristig, Nucl. Phys. A 242, 389 (1975)

    Article  ADS  Google Scholar 

  28. E. Krotscheck, J. Low Temp. Phys. 27, 199 (1977)

    Article  ADS  Google Scholar 

  29. E. Krotscheck, Phys. Rev. B 31, 4267 (1985)

    Article  ADS  Google Scholar 

  30. E. Krotscheck, W. Kohn, and G.X. Qian, Phys. Rev. B 32, 5693 (1985)

    Article  ADS  Google Scholar 

  31. C.E. Campbell, E. Krotscheck, and T. Pang, Phys. Rep. 223, 1 (1992)

    Article  ADS  Google Scholar 

  32. M. Gaudin, J. Gillespie, and G. Ripka, Nucl. Phys. A 176, 237 (1971)

    Article  ADS  Google Scholar 

  33. G. Ripka, Phys. Rep. 56, 1 (1979)

    Article  ADS  Google Scholar 

  34. E. Krotscheck, Ann. Phys. (NY) 155, 1 (1984)

    Article  ADS  Google Scholar 

  35. J.W. Clark, in Progress in Particle and Nuclear Physics, edited by D.H. Wilkinson (Pergamon Press, Oxford, 1979), Vol. 2, pp. 89–199

    Google Scholar 

  36. E. Krotscheck, H. Kümmel, and J.G. Zabolitzky, Phys. Rev. A 22, 1243 (1980)

    Article  ADS  Google Scholar 

  37. E. Krotscheck, Phys. Rev. A 26, 3536 (1982)

    Article  ADS  Google Scholar 

  38. E. Krotscheck and J.W. Clark, Nucl. Phys. A 328, 73 (1979)

    Article  ADS  Google Scholar 

  39. A.D. Jackson, E. Krotscheck, D. Meltzer, and R.A. Smith, Nucl. Phys. A 386, 125 (1982)

    Article  ADS  Google Scholar 

  40. J.M.C. Chen, J.W. Clark, and D.G. Sandler, Z. Physik A 305, 223 (1982)

    Article  ADS  Google Scholar 

  41. F. Coester, in Lectures in Theoretical Physics: Quantum Fluids and Nuclear Matter (Gordon and Breach, New York, 1969), Vol. XI B

    Google Scholar 

  42. M. Saarela, Phys. Rev. B 33, 4596 (1986)

    Article  ADS  Google Scholar 

  43. J. Boronat and J. Casulleras, Europhys. Lett. 38, 291 (1997)

    Article  ADS  Google Scholar 

  44. G. Senger, M.L. Ristig, C.E. Campbell, and J.W. Clark, Ann. Phys. (NY) 218, 160 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. M.L. Ristig, G. Senger, M. Serhan, and J.W. Clark, Ann. Phys. (NY) 243, 247 (1995)

    Article  ADS  Google Scholar 

  46. H.W. He, Ph.D. thesis, Texas A& M University, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jesús Navarro Artur Polls

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Krotscheck, E. (1998). Inhomogeneous quantum liquids: Statics, dynamics, and thermodynamics. In: Navarro, J., Polls, A. (eds) Microscopic Quantum Many-Body Theories and Their Applications. Lecture Notes in Physics, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104527

Download citation

  • DOI: https://doi.org/10.1007/BFb0104527

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64471-2

  • Online ISBN: 978-3-540-69787-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics