Skip to main content

Correlated basis function theory for fermion systems

  • Conference paper
  • First Online:
Microscopic Quantum Many-Body Theories and Their Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 510))

Abstract

A description of correlated basis function theory for Fermi systems is given with the perspective of discussing some of the recent developments and its range of applications. The actual status of variational calculations in liquid helium, strongly correlated electrons and nuclear matter is presented, by discussing the merits and limitations of the most realistic trial wave functions. Correlated basis function perturbation theory is described as a tool to go beyond variational calculations. The not-orthogonal and the newly developed orthogonal versions are discussed and compared. A brief review of the one-body Green’s function calculation in nuclear matter is presented, as one of the main applications of the orthogonal version of the perturbation theory. We describe a generalized Fermi Hyper-Netted Chain scheme, showing that it constitutes a powerful method to compute the hamiltonian and identity operator matrix elements, which enter the correlated basis theory, starting from its zeroth order or variational theory. Such scheme sums up both reducible and irreducible cluster terms, whereas the original FHNC one takes care of the irreducible terms only, and it is particularly suitable for calculations with state dependent correlations, as well as for finite systems, like nuclei and helium droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.D. Osheroff, R.C. Richardson and D.M. Lee, Phys. Rev. Lett. 28, 885 (1972)

    Article  ADS  Google Scholar 

  2. S. Fantoni and S. Rosati, Lett. Nuovo Cimento 10, 545 (1974)

    Article  Google Scholar 

  3. E. Krotscheck and M.L. Ristig, Phys. Lett. A48, 17 (1971)

    ADS  Google Scholar 

  4. W.L. McMillan, Phys. Rev. A 138, 442 (1965)

    Article  ADS  Google Scholar 

  5. D.M. Ceperley and M.H. Kalos, Monte Carlo Methods in Statistical Physics edited by K. Binder, 1979 (Springer-Verlag, Berlin)

    Google Scholar 

  6. E. Krotscheck, Phys. Rev. B 33, 3158 (1986)

    Article  ADS  Google Scholar 

  7. E. Krotscheck, contribution to this volume

    Google Scholar 

  8. S.A. Vitiello and K.E. Schmidt, Phys. Rev. B 46, 5442 (1992)

    Article  ADS  Google Scholar 

  9. S. Moroni, S. Fantoni and G. Senatore, Phys. Rev. B 52, 13547 (1995)

    Article  ADS  Google Scholar 

  10. J.W. Clark, Progress in Particle and Nuclear Physics 2, edited by D.H. Wilkinson, 1979 (Pergamon, Oxford) 89

    Google Scholar 

  11. E. Krotscheck and J.W. Clark, Nucl. Phys. A333, 77 (1980)

    ADS  Google Scholar 

  12. S. Fantoni and V.R. Pandharipande, Phys. Rev. C 37, 1697 (1988)

    Article  ADS  Google Scholar 

  13. R.F. Bishop, contribution to this volume

    Google Scholar 

  14. K.E. Schmidt and M.H. Kalos, Monte Carlo Methods in Statistical Physics II, Topics in Current Physics, edited by K. Binder, 1984 (Springer-Verlag, Berlin)

    Google Scholar 

  15. K.E. Schmidt and D.M. Ceperley, Monte Carlo Methods III, edited by K. Binder, 1991 (Springer-Verlag, Berlin)

    Google Scholar 

  16. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  17. S. Fantoni and S. Moroni, Many Body Theory of Correlated Fermion Systems, edited by J.M. Arias, M. Gallardo and M. Lozano, 1998 (World Scientific), in press

    Google Scholar 

  18. A. Fabrocini, contribution to this volume

    Google Scholar 

  19. J.G. Zabolitzky, Phys. Rev. B 22, 2353 (1980)

    Article  ADS  Google Scholar 

  20. E. Krotscheck, Ann. Phys. (NY) 155, 1 (1984)

    Article  ADS  Google Scholar 

  21. M.L. Ristig, J.W. Kim and R. Mehlman, Condensed Matter Theories, Vol. 11, edited by E. Ludeña et al, 1995 (Nova Science Publishers, New York)

    Google Scholar 

  22. V.R. Pandharipande and R.B. Wiringa, Rev. Mod. Phys. 51, 821 (1979)

    Article  ADS  Google Scholar 

  23. S. Rosati, in International School of Physics Enrico Fermi, Course LXXIX, edited by A. Molinari, 1981 (North-Holland, Amsterdam), 73

    Google Scholar 

  24. J.G. Zabolitzky, in Advances in Nuclear Physics, Vol. 12, edited by J.W. Negele and E. Vogt, 1981 (Plenum, New York, London) 1

    Google Scholar 

  25. J.P. Blaizot and G. Ripka, Quantum Theory of Finite Systems, 1986 (The MIT Press, Cambridge)

    Google Scholar 

  26. A. Fabrocini and S. Fantoni, First International Course on Condensed Matter, ACIF series, Vol. 8 edited by D. Prosperi, S. Rosati and S. Violini, 1987 (World Scientific, Singapore), 87

    Google Scholar 

  27. V.R. Pandharipande, I. Sick and P.K.A. de Witt Huberts, Rev. Mod. Phys. 69, 981 (1997)

    Article  ADS  Google Scholar 

  28. E. Feenberg, Theory of Quantum Liquids, edited by K. Binder, 1969 (Springer, New York)

    Google Scholar 

  29. S. Moroni, G. Senatore and S. Fantoni, Phys. Rev. B. 55, 1040 (1997)

    Article  ADS  Google Scholar 

  30. S. Fantoni and V.R. Pandharipande, Nucl. Phys. A427, 473 (1984)

    ADS  Google Scholar 

  31. O. Benhar, A. Fabrocini and S. Fantoni, 4th Workshop on Perspectives in Nuclear Physics at Intermediate Energies, edited by S. Boffi, C. Ciofi degli Atti and M. Giannini, 1989 (World Scientific, Singapore), 333

    Google Scholar 

  32. R.A. Aziz et al, J. Chem. Phys. 70, 4330 (1979)

    Article  ADS  Google Scholar 

  33. M.H. Kalos et al, Phys. Rev. B 24, 115 (1981)

    Article  ADS  Google Scholar 

  34. K.E. Schmidt et al, Phys. Rev. Lett. 47, 807 (1981)

    Article  ADS  Google Scholar 

  35. E. Manousakis et al, Phys. Rev. B 28, 3770 (1983)

    Article  ADS  Google Scholar 

  36. R.P. Feynman and M. Cohen, Phys. Rev. 102 1189 (1956)

    Article  MATH  ADS  Google Scholar 

  37. M. Viviani et al, Phys. Rev. B 38, 4523 (1988)

    Article  ADS  Google Scholar 

  38. J.W. Lawson et al, Phys. Rev. Lett. 78, 1846 (1997)

    Article  ADS  Google Scholar 

  39. O. Ciftja, PhD thesis, International School for Advanced Studies, Trieste (1997)

    Google Scholar 

  40. F. Pederiva et al, Phys. Rev. B 53, 15129 (1996)

    Article  ADS  Google Scholar 

  41. K.E. Schmidt, private communication

    Google Scholar 

  42. Q.N. Usmani, S. Fantoni and V.R. Pandharipande, Phys. Rev. B 26, 6123 (1983)

    Article  ADS  Google Scholar 

  43. A. Fabrocini and S. Rosati, Nuovo Cimento D 1, 165; 567 (1982)

    Google Scholar 

  44. S.A. Vitiello et al, Phys. Rev. Lett. 60, 1970 (1988)

    Article  ADS  Google Scholar 

  45. L. Reatto and G.L. Masserini, Phys. Rev. B 38, 4516 (1988)

    Article  ADS  Google Scholar 

  46. F. Pederiva et al, Phys. Rev. Lett. 72, 2589 (1994)

    Article  ADS  Google Scholar 

  47. S. Moroni, L. Reatto and S. Fantoni, Czech. J. Phys. S1 46 281 (1996)

    Article  Google Scholar 

  48. D.C. Tsui, H.L. Stormer and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  49. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  50. R.B. Laughlin, The Quantum Hall Effect, edited by R. Prange and S. Girvin, 1987 (Springer-Verlag, New York)

    Google Scholar 

  51. T. Chakraborty and P. Pietaläinen, The Fractional Quantum Hall Effect, 1988 (Springer-Verlag, New York)

    Google Scholar 

  52. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  53. B.I. Halperin, Helv. Phys. Acta 56, 75 (1983)

    Google Scholar 

  54. J.M. Caillol et al, J. Stat. Phys. 28, 325 (1982)

    Article  ADS  Google Scholar 

  55. J.P. Hansen and D. Levesque, J. Phys. C 14, L603 (1981)

    Google Scholar 

  56. O. Ciftja and S. Fantoni, Europhys. Lett. 36, 663 (1996)

    Article  ADS  Google Scholar 

  57. J.K. Jain, Phys. Rev. Lett. 63, 199 (1989)

    Article  ADS  Google Scholar 

  58. G. Dev and J.K. Jain, Phys. Rev. Lett. 69, 2483 (1992)

    Article  Google Scholar 

  59. X.G. Wu, G. Dev and J.K. Jain, Phys. Rev. Lett. 71, 153 (1993)

    Article  ADS  Google Scholar 

  60. O. Ciftja and S. Fantoni, Phys. Rev. B 56, 6712 (1997)

    Article  Google Scholar 

  61. J.K. Jain and R.K. Kamilla, Phys. Rev. B 55, R4895 (1997)

    Google Scholar 

  62. O. Ciftja et al, J. Low Temp. Phys. 108, 357 (1997)

    Article  ADS  Google Scholar 

  63. J.G. Bednorz and K.A. MĂĽller, Z. Phys. B 64, 188 (1986)

    Article  ADS  Google Scholar 

  64. C.W. Chu et al, Phys. Rev. Lett. 58, 405 (1987)

    Article  ADS  Google Scholar 

  65. D. Vollhardt, Rev. Mod. Phys. 99, 1196 (1984)

    Google Scholar 

  66. E. Manousakis, Rev. Mod. Phys. 63, 1 (1991)

    Article  ADS  Google Scholar 

  67. E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)

    Article  ADS  Google Scholar 

  68. S. Fantoni et al, Physica C 153–155, 1255 (1988)

    Article  Google Scholar 

  69. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987)

    Article  ADS  Google Scholar 

  70. X.Q. Wang et al, Phys. Rev. B 41, 11479 (1990)

    Article  ADS  Google Scholar 

  71. X.Q. Wang et al, Phys. Rev. B 46, 8894 (1992)

    Article  ADS  Google Scholar 

  72. P. Fazekas and K. Penc, Int. J. Mod. Phys. B 1, 1021 (1988)

    Article  ADS  Google Scholar 

  73. H. Yokoyama and H. Shiba, J. Phys. Soc. Jap. 56, 1490; 3570; 3582 (1987)

    Article  ADS  Google Scholar 

  74. J. Solyom, Adv. Phys. 28, 201 (1979)

    Article  ADS  Google Scholar 

  75. F.C. Zhang et al, Supercond. Sci. Technol. 1, 36 (1988)

    Article  ADS  Google Scholar 

  76. G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988)

    Article  ADS  Google Scholar 

  77. J.R. Schrieffer, X.G. Wen and S.C. Zhang, Phys. Rev. B 39, 11663 (1989)

    Article  ADS  Google Scholar 

  78. R.V. Reid Jr., Ann. Phys. (N.Y.) 50, 411 (1968)

    Article  ADS  Google Scholar 

  79. M. Lacombe et al, Phys. Rev. C 21, 861 (1980)

    Article  ADS  Google Scholar 

  80. I.E. Lagaris and V.R. Pandharipande, Nucl. Phys. A359, 331 (1981)

    ADS  Google Scholar 

  81. R.B. Wiringa, V.G.J. Stocks and R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  82. J.L. Forest et al, Phys. Rev. C 54, 646 (1996)

    Article  ADS  Google Scholar 

  83. A. Akmal and V.R. Pandharipande, Phys. Rev. C 56, 2261 (1997)

    Article  ADS  Google Scholar 

  84. R. Schiavilla, V.R. Pandharipande and R.B. Wiringa, Nucl. Phys. A449, 219 (1986)

    ADS  Google Scholar 

  85. J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  86. B.S. Pudliner, Ph.D. Thesis, University of Illinois at Urbana-Champaign (1996)

    Google Scholar 

  87. B.S. Pudliner et al, Phys. Rev. Lett. 74, 4396 (1995)

    Article  ADS  Google Scholar 

  88. A. Kievsky, S. Rosati and M. Viviani Nucl. Phys. A57, 511 (1994)

    ADS  Google Scholar 

  89. M. Viviani, R. Schiavilla and A. Kievsky, Phys. Rev. C 54, 534 (1996)

    Article  ADS  Google Scholar 

  90. E. Fradkin, Field Theories of Condensed Matter Systems, 1991 (Addison-Wesley, Reading MA)

    MATH  Google Scholar 

  91. P.M. Morse and H. Feshbach, Methods of Theoretical Physics, 1953 (McGraw-Hill, New York), Chap. 9, Part II

    MATH  Google Scholar 

  92. S. Fantoni, Phys. Rev. B 29, 2544 (1984)

    Article  ADS  Google Scholar 

  93. C.W. Woo, Phys. Rev. 151, 138 (1966)

    Article  ADS  Google Scholar 

  94. J.W. Clark, Lecture Notes in Physics, 138, edited by R. Guardiola and J. Ros, 1981 (Springer, New York), p. 184

    Google Scholar 

  95. E. Krotscheck, R.A. Smith and J.W. Clark, Lecture Notes in Physics, 142, 1981 (Springer, New York), 270

    Google Scholar 

  96. E. Krotscheck, R.A. Smith and A.D. Jackson, Phys. Lett. B 104, 421 (1981)

    Article  ADS  Google Scholar 

  97. A.D. Jackson et al, Nucl. Phys. A386, 125 (1982)

    ADS  Google Scholar 

  98. E. Manousakis and V.R. Pandharipande, Phys. Rev. B 33, 150 (1986)

    Article  ADS  Google Scholar 

  99. E. Krotscheck, R.A. Smith, J.W. Clark, and R.M. Panoff, Phys. Rev. B 24, 6383 (1981)

    Article  ADS  Google Scholar 

  100. S. Fantoni, V.R. Pandharipande and K.E. Schmidt, Phys. Rev. Lett. 48, 878 (1982)

    Article  ADS  Google Scholar 

  101. B.L. Friman and E. Krotscheck, Phys. Rev. Lett. 49, 1705 (1982)

    Article  ADS  Google Scholar 

  102. R.B. Wiringa, R.A. Smith and T.L. Ainsworth, Phys. Rev. C 29, 1207 (1984)

    Article  ADS  Google Scholar 

  103. I.E. Lagaris and V.R. Pandharipande, Nucl. Phys. A359, 349 (1981)

    ADS  Google Scholar 

  104. S. Fantoni, B.L. Friman and V.R. Pandharipande, Nucl. Phys. A399, 51 (1983)

    ADS  Google Scholar 

  105. A. Fabrocini and S. Fantoni, Phys. Lett. B 298, 263 (1993)

    Article  ADS  Google Scholar 

  106. A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, 1963 (Dover, New Jork)

    MATH  Google Scholar 

  107. M. Baldo et al, Nucl. Phys. A545, 741 (1992)

    ADS  Google Scholar 

  108. M. Bauer et al, J. Phys. G 8, 525 (1982)

    Article  ADS  Google Scholar 

  109. E. Krotscheck, Phys. Rev. A 26, 3536 (1982)

    Article  ADS  Google Scholar 

  110. S. Fantoni, B.L. Friman and V.R. Pandharipande, Phys. Lett. B 104, 89 (1981)

    Article  ADS  Google Scholar 

  111. J.W. Negele and K. Yazaki, Phys. Rev. Lett. 47, 71 (1981)

    Article  ADS  Google Scholar 

  112. A.B. Migdal, JETP (Sov. Phys.) 5, 333 (1957)

    MathSciNet  Google Scholar 

  113. J.M. Luttinger, Phys. Rev. 119, 1153 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  114. O. Benhar, A. Fabrocini and S. Fantoni, Phys. Rev. C 41, R24 (1990)

    Google Scholar 

  115. O. Benhar, A. Fabrocini and S. Fantoni, Nucl. Phys. A505, 267 (1989)

    ADS  Google Scholar 

  116. P.O. Löwdin, J. Chem. Phys. 18, 365 (1950)

    Article  ADS  Google Scholar 

  117. H. Brandow and H. Baird, Rev. Mod. Phys. 39, 771 (1967)

    Article  ADS  Google Scholar 

  118. A. Fabrocini and S. Fantoni, Nucl. Phys. A503, 375 (1989)

    ADS  Google Scholar 

  119. A. Fabrocini et al, Phys. Rev. B 33, 6057 (1986)

    Article  ADS  Google Scholar 

  120. A. Fabrocini et al, Phys. Rev. B 54, 1035 (1996)

    Article  Google Scholar 

  121. S. Fantoni and S. Rosati, Nuovo Cimento, A 20, 179 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  122. T. Morita, Progr. Theor. Phys. 20, 920 (1958)

    Article  MATH  ADS  Google Scholar 

  123. J.M. Van Leeuwen, J. Groeneveld and J. De Boer, Physica, 25, 792 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  124. S. Fantoni and S. Rosati, Phys. Lett. B 84, 23 (1979)

    Article  ADS  Google Scholar 

  125. T. Morita and K. Hiroike, Progr. Theor. Phys. 23, 1003 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  126. S. Fantoni, Nuovo Cimento, A 44, 191 (1978)

    Article  ADS  Google Scholar 

  127. G. CĂł et al, Nucl. Phys. A549, 439 (1992)

    ADS  Google Scholar 

  128. F. Arias de Saavedra et al, Nucl. Phys. A605, 359 (1996)

    ADS  Google Scholar 

  129. A. Fabrocini et al, Phys. Rev. C (1998) in press

    Google Scholar 

  130. R.B. Wiringa, V. Fiks and A. Fabrocini, Phys. Rev. C 38, 1010 (1988)

    Article  ADS  Google Scholar 

  131. I.E. Lagaris, Anales de Fisica, 81, 39 (1985)

    Google Scholar 

  132. G.E. Brown, Many Body Physics, 1972 (North-Holland, Amsterdam)

    Google Scholar 

  133. A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems, 1971 (McGraw-Hill, NY)

    Google Scholar 

  134. P.K.A. DeWitt Huberts, J. Phys. G 16, 507 (1990)

    Article  ADS  Google Scholar 

  135. S. Frullani and J. Mougey, Adv. Nucl. Phys. 14, 1 (1984)

    Google Scholar 

  136. O. Benhar, A. Fabrocini and S. Fantoni, Nucl. Phys. A550, 201 (1992)

    ADS  Google Scholar 

  137. B. Frois and I. Sick, editors Modern Topics in Electron Scattering, (1991) (World Scientific, Singapore)

    Google Scholar 

  138. S. Fantoni and V.R. Pandharipande, Nucl. Phys. A473, 234 (1987)

    ADS  Google Scholar 

  139. A.S. Rinat and W.H. Dickhoff, Phys. Rev. B 42, 1004 (1990)

    Article  Google Scholar 

  140. O. Benhar et al, Phys. Rev. C 44, 2328 (1991)

    Article  ADS  Google Scholar 

  141. S. Fantoni and I. Sick, Electron-Nucleus Scattering, edited by O. Benhar, A. Fabrocini and R. Schiavilla, 1994 (World Scientific, Singapore), 88–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

JesĂşs Navarro Artur Polls

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Fantoni, S., Fabrocini, A. (1998). Correlated basis function theory for fermion systems. In: Navarro, J., Polls, A. (eds) Microscopic Quantum Many-Body Theories and Their Applications. Lecture Notes in Physics, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104526

Download citation

  • DOI: https://doi.org/10.1007/BFb0104526

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64471-2

  • Online ISBN: 978-3-540-69787-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics