Skip to main content

A thermal cluster-cumulant theory

  • Conference paper
  • First Online:
Microscopic Quantum Many-Body Theories and Their Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 510))

Abstract

The preeminent success of the coupled cluster theory for treating correlation effects to high accuracy has prompted attempts in recent years to extend this approach to encompass temperature-dependent situations. We shall discuss here one such nonperturbative finite-temperature version, to be called a cluster-cumulant formalism, which shares the best features of a zero-temperature coupled cluster theory. The key theoretical ingredients of the method are :(a) the notion of thermal normal ordering and Wick-like expansion theorem to simplify the imaginary-time ordered exponential representation of the Boltzmann operator, and (b) a representation of the Boltzmann operator as an exponential of a cluster-cumulant in the thermal normal order. The grand partition function is generated systematically as a thermal trace of the Boltzmann operator. Generalization of the concept of the normal ordering to cover imaginary-time path-integral based methods for partition functions offers an access to systematic nonperturbative extensions of the usual Feynman-Kleinert approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  2. G. Parisi, Statistical Field Theory (Addison-Wesley, Palo Alto, CA, 1988)

    MATH  Google Scholar 

  3. J. W. Negele and H. Orland, Quantum Many Particle Systems (Addison-Wesley, Palo Alto, CA, 1988)

    MATH  Google Scholar 

  4. T. Matsubara, Prog. Theor. Phys. 14, 351, 628 (1955)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. D.J. Thouless, Phys. Rev. 107, 1162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Bloch, in Studies in Statistical Mechanics Vol. 3, edited by J. de Boer and G. E. Uhlenbeck (North-Holland, Amsterdam, 1965)

    Google Scholar 

  7. C. Bloch, Nucl. Phys. 7, 451, 459 (1958)

    Article  Google Scholar 

  8. C. Bloch, in Lectures on the Many-Body Problem Vol. 1, edited by E.R. Caianiello (Academic Press, New York, 1962), p. 31

    Google Scholar 

  9. R. Balian, ibidem, p. 139

    Google Scholar 

  10. C. de Dominicis, ibidem, p. 163

    Google Scholar 

  11. P.C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. E.S. Fradkin, Nucl. Phys. 12, 465 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Schwinger, J. Math. Phys. 2, 407 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path-Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  15. H. Kleinert, Path-integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1990), and references therein.

    MATH  Google Scholar 

  16. R. Giachetti and V. Tognetti, Phys. Rev. Lett. 55, 912 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. Phys. Rev. B 33, 7647 (1986)

    Google Scholar 

  18. R. P. Feynman and H. Kleinert, Phys. Rev. A34, 5080 (1986)

    ADS  MathSciNet  Google Scholar 

  19. H. Büttner and N. Flytzanis, Phys. Rev. A 36, 3443 (1987)

    Article  ADS  Google Scholar 

  20. S.K. Lee, K.L. Liu and K. Young, Phys. Rev. A 44, 7951 (1991)

    Article  ADS  Google Scholar 

  21. H. Kleinert, Phys. Lett. B280, 251 (1992)

    ADS  MathSciNet  Google Scholar 

  22. Phys. Lett. A173, 332 (1993)

    Google Scholar 

  23. L. Leplae, H. Umezawa, and F. Mancini, Phys. Rep. 10, 151 (1974)

    Article  ADS  Google Scholar 

  24. H. Umezawa, H. Matsumoto and M. Tachiki, Thermofield Dynamics and Condensed States (North-Holland, Amsterdam, 1982)

    Google Scholar 

  25. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  26. 17, 1100 (1962)

    Google Scholar 

  27. R.F. Fox, Phys. Rep. 48, 179 (1978)

    Article  ADS  Google Scholar 

  28. W. Kohn and J.M. Luttinger, Phys. Rev. 118, 41 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. J.M. Luttinger and J.C. Ward, Phys. Rev. 118, 1417 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. N.N. Bogoliubov, D.B. Zubarev, and I.A. Tserkovnikov, Sov. Phys. Dokl. 2, 535 (1957)

    ADS  Google Scholar 

  31. C. De Dominicis, J. Math. Phys. 3, 983 (1962)

    Article  ADS  Google Scholar 

  32. ibidem, 4, 255 (1963)

    Article  ADS  Google Scholar 

  33. R. Balian and M. Veneroni, Ann. Phys. (NY) 164, 334 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  34. ibidem187, 29 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. G. Sanyal, Sh.H. Mandal and D. Mukherjee, Chem. Phys. Letts. 192, 55 (1992)

    Article  ADS  Google Scholar 

  36. G. Sanyal, Sh.H. Mandal, S. Guha and D. Mukherjee, Phys. Rev. E 48, 3373 (1993)

    Article  ADS  Google Scholar 

  37. G. Sanyal, Sh.H. Mandal and D. Mukherjee. Proc. Indian. Acad. Sci. (Chem. Sci.) 106, 407 (1994)

    Google Scholar 

  38. Sh.H. Mandal, G. Sanyal, R. Ghosh and D. Mukherjee, in Condensed Matter Theories, Vol. 9, edited by J.W. Clark, K.A. Shoaib and A. Sadiq (Nova Science Publishers, New York, 1994)

    Google Scholar 

  39. M. Gaudin, Nucl. Phys. 15, 89 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  40. F.A. Berezin, The Method of Second Quantization (Academic Press, New York, 1966)

    MATH  Google Scholar 

  41. M. Altenbokum, K. Emrich, H. Kümmel and J.G. Zabolitzky, in Condensed Matter Theories, Vol. 2, edited by P. Vashista, R. K. Kalia and R.F. Bishop (Plenum, New York, 1987)

    Google Scholar 

  42. F. Coester, Nucl. Phys. 7, 421 (1958)

    Article  Google Scholar 

  43. F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960)

    Article  MATH  Google Scholar 

  44. J. Čižek, J. Chem. Phys. 45, 4256 (1966)

    Article  ADS  Google Scholar 

  45. Adv. Chem. Phys. 14, 35 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jesús Navarro Artur Polls

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Mandal, S.H., Sanyal, G., Mukherjee, D. (1998). A thermal cluster-cumulant theory. In: Navarro, J., Polls, A. (eds) Microscopic Quantum Many-Body Theories and Their Applications. Lecture Notes in Physics, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104525

Download citation

  • DOI: https://doi.org/10.1007/BFb0104525

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64471-2

  • Online ISBN: 978-3-540-69787-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics