Skip to main content

The coupled cluster method

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 510))

Abstract

The coupled cluster method (CCM) is nowadays widely recognised as providing one of the most powerful, most universally applicable, and numerically most accurate at attainable levels of implementation, of all available ab initio methods of microscopic quantum many-body theory. The number of successful applications of the method to a wide range of physical and chemical systems is impressively large. In almost all such cases the numerical results are either the best or among the best available. A typical example is the electron gas, where the CCM results for the correlation energy agree over the entire metallic density range to within less than one millihartree per electron (or <1%) with the essentially exact Green’s function Monte Carlo results.

What has since become known as the normal (NCCM) version of the method was invented some forty years ago to calculate the ground-state energies of closed-shell atomic nuclei. Extensions of the CCM have since been developed to calculate excited states, energies of open-shell systems, density matrices and hence other properties, sum rules, and the sub-sum-rules that follow from embedding linear response theory within the NCCM. Further extensions deal with the general dynamics of quantum many-body systems, and with their mixed states appropriate, for example, to their behaviour at nonzero temperatures. More recently, a so-called extended (ECCM) version of the method has been introduced. It has the same ability as the NCCM to describe accurately the local properties of quantum many-body systems, but it also has the potential to describe such global phenomena as phase transitions, spontaneous symmetry breaking, states of topological excitation, and nonequilibrium behaviour.

The role of the CCM within modern quantum many-body theory is first surveyed, by a comparison with, and discussion of, the alternative microscopic formulations. We then discuss the method and each of its individual components in considerable detail. Our overall aim is to stress the broad applicability of the method. To that end we introduce and exploit a very general theoretical framework in which to formulate the key ideas and to develop the theory. We end with a brief review of the applications of the method to date.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Coester, Nucl. Phys. 7, 421 (1958).

    Article  Google Scholar 

  2. F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).

    Article  MATH  Google Scholar 

  3. B.D. Day, Rev. Mod. Phys. 50, 495 (1978); Nucl. Phys. A328, 1 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Mahaux, Nucl. Phys. A328, 24 (1979).

    ADS  Google Scholar 

  5. B.D. Day, in From Nuclei to Particles, edited by A. Molinari (North-Holland, Amsterdam, 1981).

    Google Scholar 

  6. D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951); 92, 609 (1953)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. D. Pines, ibid. 92, 626 (1953).

    Article  MATH  ADS  Google Scholar 

  8. M. Gell-Mann and K.A. Brueckner, Phys. Rev. 106, 364 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. H. Kümmel, K.H. Lührmann, and J.G. Zabolitzky, Phys. Rep. 36C, 1 (1978).

    Article  ADS  Google Scholar 

  10. H.G. Kümmel, in Nucleon-Nucleon Interaction and Nuclear Many-Body Problems, edited by S.S. Wu and T.T.S. Kuo (World Scientific, Singapore, 1984), p. 46.

    Google Scholar 

  11. V. Kvasnička, V. Laurinc, and S. Biskupič, Chem. Phys. Lett. 73, 81 (1979)

    Article  ADS  Google Scholar 

  12. M.F. Guest and S. Wilson, ibid. 73, 607 (1980)

    Article  ADS  Google Scholar 

  13. M.J. Frisch, R. Krishnan, and J.A. Pople, ibid. 75, 66 (1980)

    Article  ADS  Google Scholar 

  14. R.J. Bartlett, H. Sekino, and G.D. Purvis, ibid. 98, 66 (1983).

    Article  ADS  Google Scholar 

  15. J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry (Academic, London, 1973).

    Google Scholar 

  16. Y. Öhrn, in Aspects of Many-Body Effects in Molecules and Extended Systems (Lecture Notes in Chemistry, Vol. 50), edited by D. Mukherjee (Springer, Berlin, 1989), p. 187

    Google Scholar 

  17. J. Oddershede and P.W. Sengeløv, in ibid., p. 207.

    Google Scholar 

  18. I.T. Diatlov, V.V. Sudakhov, and K.A. Ter-Matirosian, Sov. Phys.-JETP 5, 631 (1957).

    Google Scholar 

  19. R. Roulet, J. Gavoret, and P. Nozières, Phys. Rev. 178, 1072 (1969).

    Article  ADS  Google Scholar 

  20. G. Ripka, Phys. Rep. 56, 1 (1979).

    Article  ADS  Google Scholar 

  21. A.D. Jackson, A. Lande, and R.A. Smith, Phys. Rep. 86, 55 (1982).

    Article  ADS  Google Scholar 

  22. A.D. Jackson, A. Lande, and R.A. Smith, Phys. Rev. Lett. 54, 1469 (1985)

    Article  ADS  Google Scholar 

  23. E. Krotscheck, R.A. Smith, and A.D. Jackson, Phys. Rev. A 33, 3535 (1986).

    Article  ADS  Google Scholar 

  24. A. Lande and R.A. Smith, Phys. Lett. 131B, 253 (1983).

    ADS  Google Scholar 

  25. R.A. Smith and A.D. Jackson, in Recent Progress in Many-Body Theories, Vol. 1, edited by A.J. Kallio, E. Pajanne, and R.F. Bishop (Plenum, New York, 1988), p. 327

    Google Scholar 

  26. A. Lande and R.A. Smith, in ibid., p. 335.

    Google Scholar 

  27. R.A. Smith and A. Lande, in Condensed Matter Theories, Vol. 3, edited by J.S. Arponen, R.F. Bishop, and M. Manninen (Plenum, New York, 1988), p. 1.

    Google Scholar 

  28. A.D. Jackson, A. Lande, R.W. Guitink, and R.A. Smith, Phys. Rev. B 31, 403 (1985).

    Article  ADS  Google Scholar 

  29. G. Baym and L.P. Kadanoff, Phys. Rev. 124, 287 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. G. Baym, ibid. 127, 1391 (1962).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. R.A. Smith, in Condensed Matter Theories, Vol. 4, edited by J. Keller (Plenum, New York, 1989), p. 129.

    Google Scholar 

  32. R. Jastrow, Phys. Rev. 98, 1479 (1955).

    Article  MATH  ADS  Google Scholar 

  33. F. Iwamoto and M. Yamada, Prog. Theor. Phys. 17, 543 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. J.W. Clark and P. Westhaus, J. Math. Phys. 9, 131 (1968)

    Article  ADS  Google Scholar 

  35. J.W. Clark, ibid. 9, 149 (1968).

    Article  ADS  Google Scholar 

  36. M. Gaudin, J. Gillespie, and G. Ripka, Nucl. Phys. A176, 237 (1971)

    ADS  Google Scholar 

  37. S. Fantoni and S. Rosati, Nuovo Cim. 20A, 179 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  38. G. Ripka, Nucl. Phys. A314, 115 (1979).

    ADS  Google Scholar 

  39. E. Feenberg, Theory of Quantum Fluids (Academic, New York, 1969).

    Google Scholar 

  40. S. Fantoni and S. Rosati, Lett. Nuovo Cim, 10, 545 (1974); Nuovo Cim. 25A, 593 (1975).

    Article  Google Scholar 

  41. E. Krotscheck and M.L. Ristig, Phys. Lett. 48A, 17 (1974); Nucl. Phys. A242, 389 (1975).

    ADS  Google Scholar 

  42. J.W. Clark, in Progress in Particle and Nuclear Physics, Vol. 2, edited by D.H. Wilkinson (Pergamon, Oxford, 1979), p. 89.

    Google Scholar 

  43. V.R. Pandharipande and R.B. Wiringa, Rev. Mod. Phys. 51, 821 (1979)

    Article  ADS  Google Scholar 

  44. R.B. Wiringa and V.R. Pandharipande, Nucl. Phys. A317, 1 (1979)

    ADS  Google Scholar 

  45. J.C. Owen, Phys. Lett. 82B, 23 (1979)

    ADS  Google Scholar 

  46. L.J. Lantto and P.J. Siemens, Nucl. Phys. A317, 55 (1979)

    ADS  Google Scholar 

  47. J.G. Zabolitzky, in Advances in Nuclear Physics, Vol. 12, edited by J.W. Negele and E. Vogt (Plenum, New York, 1980)

    Google Scholar 

  48. S. Fantoni and V.R. Pandharipande, Nucl. Phys. A427, 473 (1984).

    ADS  Google Scholar 

  49. S. Rosati and S. Fantoni, in The Many-Body Problem: Jastrow Correlations Versus Brueckner Theory (Lecture Notes in Physics, Vol. 138), edited by R. Guardiola and J. Ros (Springer, Berlin, 1981), p. 1.

    Chapter  Google Scholar 

  50. S. Rosati and M. Viviani, in First International Course on Condensed Matter (ACIF Series, Vol. 8, edited by D. Prosperi, S. Rosati, and G. Violini (World Scientific, Singapore, 1988), p. 231.

    Google Scholar 

  51. C. Ciofi degli Atti, in Perspectives on Theoretical Nuclear Physics (Proc. of the Primo Convegno su Problemi di Fisica Nucleare Teorica, Italy, 1985), edited by L. Bracci et al. (ETS Editrice, Pisa, 1986), p. 1.

    Google Scholar 

  52. J.W. Clark, Nucl. Phys. A328, 587 (1979).

    ADS  Google Scholar 

  53. J.W. Clark and E. Feenberg, Phys. Rev. 113, 388 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. H.W. Jackson and E. Feenberg, Ann. Phys. (NY) 15, 266 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. E. Feenberg, and C.W. Woo, Phys. Rev. 137, A391 (1965)

    Google Scholar 

  56. J.W. Clark and P. Westhaus, Phys. Rev. 141, 833 (1966); 149, 990 (1966).

    Article  ADS  Google Scholar 

  57. J.W. Clark, L.R. Mead, E. Krotscheck, K.E. Kürten, and M.L. Ristig, Nucl. Phys. A328, 45 (1979).

    ADS  Google Scholar 

  58. E. Krotscheck and J.W. Clark, Nucl. Phys. A328, 73 (1979).

    ADS  Google Scholar 

  59. J.W. Clark, in The Many-Body Problem: Jastrow Correlations Versus Brueckner Theory (Lecture Notes in Physics, Vol. 138), edited by R. Guardiola and J. Ros (Springer, Berlin, 1981), p. 184.

    Chapter  Google Scholar 

  60. J.M.C. Chen, J.W. Clark, and D.G. Sandler, Z. Phys. A 305, 223, (1982); 305, 367 (1982).

    Article  ADS  Google Scholar 

  61. E. Krotscheck, R.A. Smith, J.W. Clark, and R.M. Panoff, Phys. Rev. B 24, 6383 (1981)

    Article  ADS  Google Scholar 

  62. M.F. Flynn, J.W. Clark, E. Krotscheck, R.A. Smith, and R.M. Panoff, ibid. 32, 2945 (1985).

    Article  ADS  Google Scholar 

  63. E. Krotscheck, J.W. Clark, and A.D. Jackson, Phys. Rev. B 28, 5088 (1983).

    Article  ADS  Google Scholar 

  64. J.W. Clark, E. Krotscheck, and B. Schwesinger, Phys. Lett. 143B, 287 (1984); Anales Fisica A81, 116 (1985).

    ADS  Google Scholar 

  65. R.F. Bishop, in Recent Progress in Many-Body Theories, Vol. 1, edited by A.J. Kallio, E. Pajanne, and R.F. Bishop (Plenum, New York, 1988), p. 385.

    Google Scholar 

  66. J.W. Clark and M.L. Ristig, Phys. Rev. C 7, 1792 (1973)

    Article  ADS  Google Scholar 

  67. M.L. Ristig and J.W. Clark, Nucl. Phys. A199, 351 (1973).

    ADS  Google Scholar 

  68. L.R. Mead and J.W. Clark, Phys. Lett. 90B, 331 (1980).

    ADS  Google Scholar 

  69. E Krotscheck, H. Kümmel, and J.G. Zabolitzky, Phys. Rev. A 22, 1243 (1980)

    Article  ADS  Google Scholar 

  70. E. Krotscheck and J.W. Clark, in The Many-Body Problem: Jastrow Correlations Versus Brueckner Theory (Lecture Notes in Physics, Vol. 138), edited by R. Guardiola and J. Ros (Springer, Berlin, 1981), p. 356.

    Chapter  Google Scholar 

  71. R.K. Nesbet, Phys. Rev. 109, 1632 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  72. A. Cauchy, Cours d'Analyse de l'École Polytechnique, Oeuvres Complète Vols. 2,3

    Google Scholar 

  73. J.K.L. Macdonald, Phys. Rev. 43, 830 (1933).

    Article  MATH  ADS  Google Scholar 

  74. R.J. Bartlett and G.D. Purvis, Int. J. Quantum Chem. 14, 561 (1978); Phys. Scripta 21, 251 (1980).

    Article  Google Scholar 

  75. H. Primas, in Modern Quantum Chemistry, Vol. II, edited by O. Sinanoglu (Academic, New York, 1965), p. 45.

    Google Scholar 

  76. K.A. Brueckner, Phys. Rev. 97, 1353 (1955); 100, 36 (1955).

    Article  MATH  ADS  Google Scholar 

  77. P.M. Lam, J.W. Clark, and M.L. Ristig, Phys. Rev. B 16, 222 (1977)

    Article  ADS  Google Scholar 

  78. J.W. Clark, P.M. Lam, J.G. Zabolitzky, and M.L. Ristig, ibid. 17, 1147 (1978)

    Article  ADS  Google Scholar 

  79. M.L. Ristig, K.E. Kürten, and J.W. Clark, ibid. 19, 3539 (1979)

    Article  ADS  Google Scholar 

  80. M.F. Flynn, J.W. Clark, R.M. Panoff, O. Bohigas, and S. Stringari, Nucl. Phys. A427, 253 (1984).

    ADS  Google Scholar 

  81. E. Krotscheck, Nucl. Phys. A465, 461 (1987).

    ADS  Google Scholar 

  82. G. Co', A. Fabrocini, S. Fantoni, and I.E. Lagaris, Nucl. Phys. A549, 439 (1992)

    ADS  Google Scholar 

  83. F. Arias de Saavedra, G. Co', A. Fabrocini, and S. Fantoni, ibid. A605, 359 (1996).

    ADS  Google Scholar 

  84. J.M.C. Chen, J.W. Clark, E. Krotscheck, and R.A. Smith, Nucl. Phys. A451, 509 (1986)

    ADS  Google Scholar 

  85. V.A. Khodel, V.V. Khodel, and J.W. Clark, ibid. A598, 390 (1996).

    ADS  Google Scholar 

  86. M. Saarela, Phys. Rev. B 33, 4596 (1986).

    Article  ADS  Google Scholar 

  87. E. Krotscheck and M. Saarela, Phys. Rep. 232, 1 (1993)

    Article  ADS  Google Scholar 

  88. B.E. Clements, J.L. Epstein, E. Krotscheck, and M. Saarela, Phys. Rev. B 48, 7450 (1993).

    Article  ADS  Google Scholar 

  89. J.W. Clark and E. Krotscheck, in Recent Progress in Many-Body Theories (Lecture Notes in Physics, Vol. 198), edited by H. Kümmel and M.L. Ristig (Springer, Berlin, 1984), p. 127.

    Chapter  Google Scholar 

  90. S. Fantoni, X. Wang, E. Tosatti, and Lu Yu, Physica C 153–155, 1255 (1988)

    Article  Google Scholar 

  91. X.Q. Wang, S. Fantoni, E. Tosatti, and Lu Yu, in Condensed Matter Theories, Vol. 5, edited by V.C. Aguilera-Navarro (Plenum, New York, 1990), p. 203

    Google Scholar 

  92. M.L. Ristig, Z. Phys. B 79, 351 (1990).

    Article  ADS  Google Scholar 

  93. C.E. Campbell, T. Pang, and E. Krotscheck, in Condensed Matter Theories, Vol. 5, edited by V.C. Aguilera-Navarro (Plenum, New York, 1990), p. 265.

    Google Scholar 

  94. M.L. Ristig, J.W. Kim, and R. Mehlmann, in Condensed Matter Theories, Vol. 11, edited by E.V. Ludeña, P. Vashishta, and R.F. Bishop (Nova Science, Commack, New York, 1996), p. 113

    Google Scholar 

  95. M.L. Ristig, J.W. Kim, and J.W. Clark, Phys. Rev. B 57, 56 (1998).

    Article  ADS  Google Scholar 

  96. A. Dabringhaus, M.L. Ristig, and J.W. Clark, Phys. Rev. D 43, 1978 (1991).

    Article  ADS  Google Scholar 

  97. F. Coester, in Lectures in Theoretical Physics: Quantum Fluids and Nuclear Matter, Vol. XI B (Gordon and Breach, New York, 1969).

    Google Scholar 

  98. J. Arponen, Ann. Phys. (NY) 151, 311 (1983).

    Article  ADS  Google Scholar 

  99. R.F. Bishop, J. Arponen, and E. Pajanne, in Aspects of Many-Body Effects in Molecules and Extended Systems, (Lecture Notes in Chemistry, Vol. 50), edited by D. Mukherjee (Springer, Berlin, 1989), p. 79

    Google Scholar 

  100. R.F. Bishop and J.S. Arponen, Int. J. Quantum Chem.: Quantum Chem. Symp. 24, 197 (1990).

    Article  Google Scholar 

  101. J.S. Arponen and R.F. Bishop, Ann. Phys. (NY) 207, 171 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  102. R.F. Bishop, M.F. Flynn, M.C. Boscá, E. Buendía, and R. Guardiola, J. Phys. G 16, L61 (1990); in The Nuclear Equation of State, Part A: Discovery of Nuclear Shock Waves and the EOS, edited by W. Greiner and H. Stöcker (Plenum, New York, 1990), p. 605; in Condensed Matter Theories, Vol. 5, edited by V.C. Aguilera-Navarro (Plenum, New York, 1990), p. 253.

    Google Scholar 

  103. R.F. Bishop, M.F. Flynn, M.C. Boscá, E. Buendía, and R. Guardiola, Phys. Rev. C 42, 1341 (1990).

    Article  ADS  Google Scholar 

  104. R.F. Bishop, E. Buendía, M.F. Flynn, and R. Guardiola, in Condensed Matter Theories, Vol. 6, edited by S. Fantoni and S. Rosati (Plenum, New York, 1991), p. 405.

    Google Scholar 

  105. R.F. Bishop, E. Buendía, M.F. Flynn, and R. Guardiola, J. Phys. G 17, 857 (1991); 18, 1157 (1992); 19, 1163 (1993).

    Article  ADS  Google Scholar 

  106. R. Guardiola, P.I. Moliner, J. Navarro, R.F. Bishop, A. Puente, and N.R. Walet, Nucl. Phys. A609, 218 (1996).

    ADS  Google Scholar 

  107. R.F. Bishop, A.S. Kendall, L.Y. Wong, and Y. Xian, Phys. Rev. D 48, 887 (1993); in Condensed Matter Theories, Vol. 8, edited by L. Blum and F.B. Malik (Plenum, New York, 1993), p. 269.

    Article  ADS  Google Scholar 

  108. R.F. Bishop, in Many-Body Physics, edited by C. Fiolhais, M. Fiolhais, C. Sousa, and J.N. Urbano (World Scientific, Singapore, 1994), p. 3.

    Google Scholar 

  109. R.F. Bishop and Y. Xian, in Condensed Matter Theories, Vol. 9, edited by J.W. Clark, K.A. Shoaib, and A. Sadiq (Nova Science, Commack, New York, 1994), p. 433.

    Google Scholar 

  110. N.J. Davidson and R.F. Bishop, Nucl. Phys. B (Proc. Suppl.) 42, 817 (1995).

    Article  ADS  Google Scholar 

  111. R.F. Bishop, N.J. Davidson, and Y. Xian, in Recent Progress in Many-Body Theories, Vol. 4, edited by E. Schachinger, H. Mitter, and H. Sormann (Plenum, New York, 1995), p. 237.

    Google Scholar 

  112. S.J. Baker, R.F. Bishop and N.J. Davidson, Phys. Rev. D 53, 2610 (1996); Nucl. Phys. B (Proc. Suppl.) 53, 834 (1997).

    Article  ADS  Google Scholar 

  113. C.H. Llewellyn Smith and N.J. Watson, Phys. Lett. B302, 463 (1993).

    ADS  Google Scholar 

  114. N.E. Ligterink, N.R. Walet, and R.F. Bishop, “A Coupled-Cluster Formulation of Hamiltonian Lattice Field Theory: The Nonlinear Sigma Model,” UMIST preprint (UMIST/Phys/TP/97-11), (UMIST, Manchester, 1997).

    Google Scholar 

  115. R.G. McGarry, PhD Thesis (University of Machester, 1990).

    Google Scholar 

  116. R.F. Bishop, in Condensed Matter Theories, Vol. 10, edited by M. Casas, M. de Llano, J. Navarro, and A. Polls (Nova Science, Commack, New York, 1995), p. 483.

    Google Scholar 

  117. H.A. Bethe, Z. Phys. 71, 205 (1931)

    Article  MATH  ADS  Google Scholar 

  118. M. Gaudin, La Fonction d'Onde de Bethe (Masson, Paris, 1963)

    Google Scholar 

  119. V.E. Korepin, N.M. Bogoliubov, and A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge Univ. Press, 1993), p. 3.

    Google Scholar 

  120. E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  121. E.H. Lieb, ibid. 130, 1616 (1963).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  122. J.B. McGuire, J. Math. Phys. 5, 622 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  123. C.N. Yang, Phys. Rev. Lett. 19, 1312 (1967).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  124. J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 106, 162 (1957); 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  125. H.J. Lipkin, N. Meshkov, and A.J. Glick, Nucl. Phys. 62, 188 (1965); 62, 199 (1965); 62, 211 (1965).

    Article  MathSciNet  Google Scholar 

  126. E. Aalto, J.S. Arponen, and R.F. Bishop, in Condensed Matter Theories, Vol. 5, edited by V.C. Aguilera-Navarro (Plenum, New York, 1990), p. 295.

    Google Scholar 

  127. J.B. Parkinson, J. Phys. C 12, 2873 (1979).

    Article  ADS  Google Scholar 

  128. Y. Xian, J. Phys.: Condens. Matter 5, 7489 (1993); 6, 5965 (1994); in Condensed Matter Theories, Vol. 10, edited by M. Casas, M. de Llano, J. Navarro, and A. Polls (Nova Science, Commack, New York, 1995), p. 541.

    Article  ADS  Google Scholar 

  129. J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).

    ADS  MathSciNet  Google Scholar 

  130. J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957).

    ADS  MathSciNet  Google Scholar 

  131. M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  132. D.J. Thouless, The Quantum Mechanics of Many-Body Systems (Academic, New York, 1961).

    MATH  Google Scholar 

  133. R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  134. J.E. Mayer and M.G. Mayer, Statistical Mechanics, 2nd ed. (Wiley, New York, 1977).

    MATH  Google Scholar 

  135. J. Čižek, J. Chem. Phys. 45, 4256 (1966); Advan. Chem. Phys. 14, 35 (1969).

    Article  ADS  Google Scholar 

  136. M. Fink, Nucl. Phys. A221, 163 (1974)

    ADS  Google Scholar 

  137. J.S. Arponen, R.F. Bishop, and E. Pajanne, Phys. Rev. A 36, 2519 (1987); in Condensed Matter Theories, Vol. 2, edited by P. Vashishta, R.K. Kalia, and R.F. Bishop (Plenum, New York, 1987), p. 357.

    Article  ADS  Google Scholar 

  138. H. Hellmann, Acta Physicochimica USSR I(6), 513 (1935)

    Google Scholar 

  139. R.P. Feynman, Phys. Rev. 56, 340 (1939).

    Article  MATH  ADS  Google Scholar 

  140. H.G. Kümmel, Int. J. Quantum Chem. 24, 79 (1983).

    Article  Google Scholar 

  141. H.J. Monkhorst, Int. J. Quantum Chem.: Quantum Chem. Symp. 11, 421 (1977).

    Google Scholar 

  142. R.J. Bartlett, in Geometrical Derivatives of Energy Surfaces and Molecular Properties, edited by P. Jørgensen and J. Simons (Reidel, Dordrecht, 1986), p. 35

    Google Scholar 

  143. E.A. Salter, G.W. Trucks, and R.J. Bartlett, J. Chem. Phys. 90, 1752 (1989).

    Article  ADS  Google Scholar 

  144. A.C. Scheiner, G.E. Scuseria, J.E. Rice, T.J. Lee, and H.F. Schaefer, J. Chem. Phys. 87, 5365 (1987).

    ADS  Google Scholar 

  145. K. Emrich, Nucl. Phys. A351, 379 (1981); A351, 397 (1981)

    ADS  Google Scholar 

  146. K. Emrich and J.G. Zabolitzky, ibid. A351, 439 (1981).

    ADS  Google Scholar 

  147. R.F. Bishop, M.C. Boscá, and M.F. Flynn, Phys. Lett. A132, 440 (1988); Phys. Rev. A 40, 3484 (1989).

    ADS  Google Scholar 

  148. R.F. Bishop, Anales Fisica A89, 9 (1985)

    Google Scholar 

  149. R.F. Bishop, W. Piechocki, and G.A. Stevens, Few-Body Systems 4, 161 (1988); 4, 179 (1988).

    Article  ADS  Google Scholar 

  150. R.F. Bishop, in Recent Progress in Many-Body Theories (Lecture Notes in Physics, Vol. 198), edited by H. Kümmel and M.L. Ristig (Springer, Berlin, 1984), p. 310; in Nucleon-Nucleon Interaction and Nuclear Many-Body Problems, edited by S.S. Wu and T.T.S. Kuo (World Scientific, Singapore, 1984), p. 604.

    Chapter  Google Scholar 

  151. A. Bijl, Physica (Utrecht) 7, 869 (1940)

    Article  MATH  ADS  Google Scholar 

  152. R.P. Feynman, Phys. Rev. 94, 262 (1954).

    Article  MATH  ADS  Google Scholar 

  153. R.F. Bishop and K.H. Lührmann, Phys. Rev. B 17, 3757 (1978); 26, 5523 (1982).

    Article  ADS  Google Scholar 

  154. R.F. Bishop, J.B. Parkinson, and Y. Xian, Phys. Rev. B 43, 13782 (1991); Theor. Chim. Acta 80, 181 (1991); Phys. Rev. B 44, 9425 (1991); in Recent Progress in Many-Body Theories, Vol. 3, edited by T.L. Ainsworth, C.E. Campbell, B.E. Clements, and E. Krotscheck (Plenum, New York, 1992), p. 117.

    Article  ADS  Google Scholar 

  155. R.F. Bishop, J.B. Parkinson, and Y. Xian, J. Phys.: Condens. Matter 4, 5783 (1992).

    Article  ADS  Google Scholar 

  156. R.F. Bishop, R.G. Hale, and Y. Xian, Phys. Rev. Lett. 73, 3157 (1994).

    Article  ADS  Google Scholar 

  157. R.F. Bishop, J.B. Parkinson, and Y. Xian, Phys. Rev. B 46, 880 (1992).

    Article  ADS  Google Scholar 

  158. C. Zeng and R.F. Bishop, in Coherent Approaches to Fluctuations, edited by M. Suzuki and N. Kawashima (World Scientific, Singapore, 1996), p. 296.

    Google Scholar 

  159. C. Zeng, D.J.J. Farnell, and R.F. Bishop, J. Stat. Phys. 90, 327 (1998).

    Article  MATH  Google Scholar 

  160. A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  161. J.P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, Mass., 1986)

    Google Scholar 

  162. J.W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, Redwood City, Calif., 1988).

    MATH  Google Scholar 

  163. B.H. Brandow, Rev. Mod. Phys. 39, 771 (1967); Ann. Phys. (NY) 57, 214 (1970).

    Article  ADS  Google Scholar 

  164. J.A. Pople, J.S. Brinkley, and R. Seeger, Int. J. Quantum Chem.: Quantum Chem. Symp. 10, 1 (1976).

    Article  Google Scholar 

  165. R. Offermann, W. Ey, and H. Kümmel, Nucl. Phys. A273, 349 (1976)

    ADS  Google Scholar 

  166. R. Offermann, ibid. A273, 368 (1976)

    ADS  Google Scholar 

  167. W. Ey, ibid. A296, 189 (1978).

    ADS  Google Scholar 

  168. I. Lindgren, Int. J. Quantum Chem.: Quantum Chem. Symp. 12, 33 (1978).

    Google Scholar 

  169. D. Mukherjee, Chem. Phys. Lett. 125, 207 (1986); Int. J. Quantum Chem.: Quantum Chem. Symp. 20, 409 (1986).

    Article  ADS  Google Scholar 

  170. I. Lindgren and D. Mukherjee, Phys. Rep. 151, 93 (1987)

    Article  ADS  Google Scholar 

  171. R. Chowdhuri, D. Mukherjee, and M.D. Prasad, in Aspects of Many-Body Effects in Molecules and Extended Systems, (Lecture Notes in Chemistry, Vol. 50), edited by D. Mukherjee (Springer, Berlin, 1989), p. 3.

    Google Scholar 

  172. J.S. Arponen, R.F. Bishop, and E. Pajanne, Phys. Rev. A 36, 2539 (1987).

    Article  ADS  Google Scholar 

  173. J. Arponen, R.F. Bishop, E. Pajanne, and N.I. Robinson, Phys. Rev. A 37, 1065 (1988); in Condensed Matter Theories, Vol. 3, edited by J.S. Arponen, R.F. Bishop, and M. Manninen (Plenum, New York, 1988), p. 51; in Aspects of Many-Body Effects in Molecules and Extended Systems, (Lecture Notes in Chemistry, Vol. 50), edited by D. Mukherjee (Springer, Berlin, 1989), p. 241.

    Article  ADS  Google Scholar 

  174. J. Arponen, R.F. Bishop, and E. Pajanne, in Condensed Matter Theories, Vol. 2, edited by P. Vashishta, R.K. Kalia, and R.F. Bishop (Plenum, New York, 1987), p. 173.

    Google Scholar 

  175. N.I. Robinson, R.F. Bishop, and J. Arponen, Phys. Rev. A 40, 4256 (1989).

    Article  ADS  Google Scholar 

  176. J.S. Arponen and R.F. Bishop, Phys. Rev. Lett. 64, 111 (1990); in Recent Progress in Many-Body Theories, Vol. 2, edited by Y. Avishai (Plenum, New York, 1990), p. 193; Theor. Chim. Acta 80, 289 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  177. J.S. Arponen, Theor. Chim. Acta 80, 149 (1991).

    Article  Google Scholar 

  178. J.S. Arponen and R.F. Bishop, Ann. Phys. (NY) 227, 275 (1993); 227, 334 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  179. M. Altenbokum, K. Emrich, H. Kümmel, and J.G. Zabolitzky, in Condensed Matter Theories, Vol. 2, edited by P. Vashishta, R.K. Kalia, and R.F. Bishop (Plenum, New York, 1987), p. 389.

    Google Scholar 

  180. G. Sanyal, S.H. Mandal, and D. Mukherjee, Chem. Phys. Lett. 192, 55 (1992)

    Article  ADS  Google Scholar 

  181. G. Sanyal, S.H. Mandal, S. Guha, and D. Mukherjee, Phys. Rev. E 48, 3373 (1993)

    Article  ADS  Google Scholar 

  182. G. Sanyal, S.H. Mandal, and D. Mukherjee, Proc. Indian Acad. Sci. (Chem. Sci.) 106, 407 (1994).

    Google Scholar 

  183. J. Arponen, Phys. Rev. A 55, 2686 (1997).

    Article  ADS  Google Scholar 

  184. M. Nakahara, Geometry, Topology and Physics (Adam Hilger, Bristol, 1990).

    Book  MATH  Google Scholar 

  185. R.J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981); J. Phys. Chem. 93, 1697 (1989); Theor. Chim. Acta 80, 71 (1991).

    Article  ADS  Google Scholar 

  186. R.F. Bishop and H.G. Kümmel, Phys. Today 40(3), 52 (1987).

    Article  Google Scholar 

  187. V. Kvasnička, V. Laurinc, and S. Biskupič, Phys. Rep. 90C, 160 (1982).

    ADS  Google Scholar 

  188. K. Szalewicz, J.G. Zabolitzky, B. Jeziorski, and H.J. Monkhorst, J. Chem. Phys. 81, 2723 (1984).

    Article  ADS  Google Scholar 

  189. R.F. Bishop, in Dirkfest’ 92 — A Symposium in Honor of J. Dirk Walecka's Sixtieth Birthday, edited by W.W. Buck, K.M. Maung, and B.D. Serot (World Scientific, Singapore, 1992), p. 21.

    Google Scholar 

  190. R.F. Bishop, in Recent Progress in Many-Body Theories, Vol. 4, edited by E. Schachinger, H. Mitter, and H. Sormann (Plenum, New York, 1995), p. 237.

    Google Scholar 

  191. H. Kümmel and J.G. Zabolitzky, Phys. Rev. C 7, 547 (1973)

    Article  ADS  Google Scholar 

  192. J.G. Zabolitzky, Nucl. Phys. A228, 272 (1974); A228, 285 (1974)

    ADS  Google Scholar 

  193. J.G. Zabolitzky and W. Ey, Phys. Lett. 76B, 527 (1978); Nucl. Phys. A328, 507 (1979)

    ADS  Google Scholar 

  194. J.G. Zabolitzky, Phys. Lett. 100B, 5 (1981).

    ADS  Google Scholar 

  195. B.D. Day, Phys. Rev. Lett. 47, 226 (1981)

    Article  ADS  Google Scholar 

  196. B.D. Day and J.G. Zabolitzky, Nucl. Phys. A366, 221 (1981)

    ADS  Google Scholar 

  197. B.D. Day, Phys. Rev. C 24, 1203 (1981)

    Article  ADS  Google Scholar 

  198. P. Bodden, Nucl. Phys. A384, 449 (1982).

    ADS  Google Scholar 

  199. R.J. Bartlett and J.F. Stanton, in Reviews in Computational Chemistry, Vol. V (VCH Publishers, New York, 1994); Recent Advances in Coupled-Cluster Methods, edited by R.J. Bartlett (World Scientific, Singapore, 1997).

    Google Scholar 

  200. D.L. Freeman, Phys. Rev. B 15, 5512 (1977)

    Article  ADS  Google Scholar 

  201. J. Arponen and E. Pajanne, J. Phys. C 15, 2665 (1982); 15, 2683 (1982).

    Article  ADS  Google Scholar 

  202. K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30, 2049 (1984).

    Article  ADS  Google Scholar 

  203. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1977)

    Article  ADS  Google Scholar 

  204. S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  ADS  Google Scholar 

  205. M. Roger and J.H. Hetherington, Phys. Rev. B 41, 200 (1990).

    Article  ADS  Google Scholar 

  206. F.E. Harris, Phys. Rev. B 47, 7903 (1993)

    Article  ADS  Google Scholar 

  207. F. Cornu, Th. Jolicoeur, and J.C. Le Guillou, ibid. 49, 9548 (1994).

    Article  ADS  Google Scholar 

  208. W.H. Wong, C.F. Lo, and Y.L. Wang, Phys. Rev. B 50, 6126 (1994).

    Article  ADS  Google Scholar 

  209. R.F. Bishop, J.B. Parkinson, and Y. Xian, J. Phys.: Condens. Matter 5, 9169 (1993).

    Article  ADS  Google Scholar 

  210. D.J.J. Farnell and J.B. Parkinson, J. Phys.: Condens. Matter 6, 5521 (1994)

    Article  ADS  Google Scholar 

  211. R. Bursill, G.A. Gehring, D.J.J. Farnell, J.B. Parkinson, T. Xiang, and C. Zeng, ibid. 7, 8605 (1995).

    Article  ADS  Google Scholar 

  212. C.F. Lo, K.K. Pang, and Y.L. Wang, J. Appl. Phys. 70, 6080 (1991).

    Article  ADS  Google Scholar 

  213. M. Roger and J.H. Hetherington, Europhys. Lett. 11, 255 (1990)

    Article  ADS  Google Scholar 

  214. C.F. Lo, E. Manousakis, and Y.L. Wang, Phys. Lett. A156, 42 (1991)

    ADS  Google Scholar 

  215. F. Petit and M. Roger, Phys. Rev. B 49, 3453 (1994)

    Article  ADS  Google Scholar 

  216. R.F. Bishop, Y. Xian, and C. Zeng, Int. J. Quantum Chem. 55, 181 (1995).

    Article  Google Scholar 

  217. C.S. Hsue and J.L. Chern, Phys. Rev. D 29, 643 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  218. U.B. Kaulfuss and M. Altenbokum, ibid. 33, 3658 (1986)

    Article  ADS  Google Scholar 

  219. H. Kümmel, in Condensed Matter Theories, Vol. 1, edited by F.B. Malik (Plenum, New York, 1986), p. 33; in Condensed Matter Theories, Vol. 3, edited by J.S. Arponen, R.F. Bishop, and M. Manninen (Plenum, New York, 1988), p. 21

    Google Scholar 

  220. R.F. Bishop and M.F. Flynn, Phys. Rev. A 38, 2211 (1988).

    Article  ADS  Google Scholar 

  221. U. Kaulfuss, Phys. Rev. D 32, 1421 (1985)

    Article  ADS  Google Scholar 

  222. C.S. Hsue, H. Kümmel, and P. Ueberholz, ibid. 32, 1435 (1985)

    Article  ADS  Google Scholar 

  223. M. Altenbokum and H. Kümmel, ibid. 32, 2014 (1985)

    Article  ADS  Google Scholar 

  224. M. Funke, U. Kaulfuss, and H. Kümmel, ibid. 35, 621 (1987).

    Article  ADS  Google Scholar 

  225. M. Funke and H. Kümmel, Phys. Rev. D 50, 991 (1994).

    Article  ADS  Google Scholar 

  226. H. Kümmel, Ruhr-Universität Bochum preprints (1997).

    Google Scholar 

  227. H. Kümmel, Phys. Rev. C 27, 765 (1983)

    Article  ADS  Google Scholar 

  228. G. Hasberg and H. Kümmel, ibid. 33, 1367 (1986).

    Article  ADS  Google Scholar 

  229. U. Kaulfuss and M. Altenbokum, Phys. Rev. D 35, 609 (1987).

    Article  ADS  Google Scholar 

  230. R.F. Bishop, N.J. Davidson, R.M. Quick, and D.M. van der Walt, Phys. Rev. A 54, R4657 (1996).

    Google Scholar 

  231. W.H. Wong and C.F. Lo, Phys. Rev. B 56, 17615 (1994).

    Article  ADS  Google Scholar 

  232. K.H. Lührmann, Ann. Phys. (NY) 103, 253 (1977)

    Article  ADS  Google Scholar 

  233. H.G. Kümmel, Nucl. Phys. A317, 199 (1979)

    ADS  Google Scholar 

  234. J. Arponen, J. Phys. G 8, L129 (1982)

    Google Scholar 

  235. J. Arponen and J. Rantakivi, Nucl. Phys. A407, 141 (1983).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jesús Navarro Artur Polls

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Bishop, R.F. (1998). The coupled cluster method. In: Navarro, J., Polls, A. (eds) Microscopic Quantum Many-Body Theories and Their Applications. Lecture Notes in Physics, vol 510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104523

Download citation

  • DOI: https://doi.org/10.1007/BFb0104523

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64471-2

  • Online ISBN: 978-3-540-69787-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics