Skip to main content

Basics of dipole emission from a planar cavity

  • Conference paper
  • First Online:
Confined Photon Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 531))

Abstract

This chapter discusses, in a tutorial way, the basic theory of electromagnetic emission by a dipole in a planar cavity, which is representative for the spontaneous emission in micro-cavity LED’s. We start from the expansion of a point source field into plane waves. Then the enhancement and inhibition effects of a cavity upon plane wave components are introduced. Next. the vectorial aspects af dealing with a dipole field are discussed, as well as the effects caused by the use of realistic mirrors. Finally we describe the effect of the cavity upon the carrier lifetime and give a discussion of guided modes. More in particular the plane wave decomposition and normal mode decomposition are confronted with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Abram, I. Robert and R. Kuszelewicz, "Spontaneous Emmission Con trol in Semiconductor Microcavities with Metallic or Bragg Mirrors", IEEE-JQE Vol. 34–1 (1998), pp. 71–76.

    Article  Google Scholar 

  2. H. Benisty, R. Stanely and M. Mayer, "Method of source terms for dipole emission modification in modes of arbitrary planar strucures", J. Opt. Soc. Am. A Vol. 15–5 (1998), pp. 1192–1201.

    Article  ADS  Google Scholar 

  3. H. Benisty, H. De Neve and C. Weisbuch, "Impact of Planar Microcavity Effects on Light Extraction — Part I: Basic Concepts and Analytical Trends", IEEE-JQE Vol. 34–9 (1998), pp. 1612–1631.

    Article  Google Scholar 

  4. H. Benisty, H. De Neve and C. Weisbuch, "Impact of Planar Microcavity Effects on Light Extraction — Part II: Selected Exact Simulations and Role of Photon Recycling", IEEE-JQE Vol. 34–9 (1998), pp. 1632–1643.

    Article  Google Scholar 

  5. G. Bjork, "On the Spontaneous Lifetime Change in an Ideal Planar Microcavity — Transition from a Mode Continuum to Quantized Modes", IEEE-JQE Vol. 30–10 (1994), pp. 2314–2318.

    Article  Google Scholar 

  6. J. Blondelle, “Realisation of high efficient substrate emitting InGaAs/(AI)GaAs microcavity LED’s using MOCVD growth", June 1997.

    Google Scholar 

  7. M. Born and E. Wolf, "Principles of optics", Oxford, Pargamon 1980.

    Google Scholar 

  8. L.M. Brekhovskikh, “Waves in layered media”, Academic Press, New York, 1960.

    Google Scholar 

  9. S.D. Brorson, H. Yokoyama, E.P. Ippen, “Spontaneous emission rate alteration in optical waveguide structures”, IEEE J. Quantum Electronics, vol. 26–9 (1990), pp. 1492–1499.

    Article  ADS  Google Scholar 

  10. H. De Neve, "Design and realisation of light emitting diodes based on the microcavity effect", May 1997.

    Google Scholar 

  11. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity”, Phys. Rev. Lett., vol. 81, no. 5, pp. 1110–1113, 1998.

    Article  ADS  Google Scholar 

  12. W. Lukosz and R. E. Kunz, "Light Emission by Magnetic and Electric Dipoles Close to a Plane Interface. I Total radiated power", J. Opt. Soc. Am Vol. 67–12 (1977), pp. 1607–1615.

    Article  Google Scholar 

  13. W. Lukosz and R. E. Kunz, "Light Emission by Magnetic and Electric Dipoles Close to a Plane Interface. I Radiation Patterns of Perpendicular Oriented Dipoles", J. Opt. Soc. Am. Vol. 67–12 (1977), pp. 1615–1619.

    Article  Google Scholar 

  14. W. Lukosz and R. E. Kunz, "Light Emission by Magnetic and Electric Dipoles Close to a Plane Interface. I RadiationPatterns of Dipoles with Arbitrary Orientation", J. Opt. Soc. Am Vol. 69–11 (1979), pp. 1495–1503.

    Article  Google Scholar 

  15. W. Lukosz, "Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers", Phys. Rev. B Vol. 22–6 (1980), pp. 3030–3037.

    Article  Google Scholar 

  16. H.A. Macleod, "Thin film optical filters", Adam Hilger, Bristol (1969)

    Google Scholar 

  17. E.M. Purcell, "Spontaneous emission probabilities at radio frequencies", Phys. Rev., vol. 69, p. 681, 1946.

    Article  Google Scholar 

  18. R. Ram, D. Babic, R. York, J. Bowers, "Spontaneous emission in microcavities with distributed mirrors", IEEE J. Quantum Electronics, Vol. 31, pp. 399–410, 1995.

    Article  ADS  Google Scholar 

  19. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter and A. Scherer, "30 % external quantum efficiency from surface textured, thin-film lightemitting diodes", Appl. Phys. Lett. Vol. 63–16 (1993), pp. 2174–2176.

    Article  Google Scholar 

  20. J. Van Bladel, "Electromagnetic fields", McGraw-Hill (1964)

    Google Scholar 

  21. C. Vassallo, "Optical waveguide concepts", Elsevier, 1991.

    Google Scholar 

  22. R. Windisch, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Dohler and G. Borghs, "High-efficiency non-resonant cavity lightemitting diodes", Electr. Lett. Vol. 34–11 (1998), pp. 1153–1154.

    Article  Google Scholar 

  23. M. Yamanishi, I. Suemune, "Comment on polarization dependent momentum matrix elements in quantum well lasers, Jap. J. Appl. Phys., 23 (1984), pp. L35–L36

    Article  ADS  Google Scholar 

  24. P. Yeh, ‘Optical waves in layered media’, John Wiley and Sons (1988)

    Google Scholar 

  25. H. Yokoyama, "Physics and Device Applications of optical Microcavities", Science Vol. 256 (1992), pp. 66–70.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Benisty Claude Weisbuch École Polytechnique Jean-Michel Gérard Romuald Houdré John Rarity

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Baets, R., Bienstman, P., Bockstaele, R. (1999). Basics of dipole emission from a planar cavity. In: Benisty, H., Weisbuch, C., Polytechnique, É., Gérard, JM., Houdré, R., Rarity, J. (eds) Confined Photon Systems. Lecture Notes in Physics, vol 531. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104380

Download citation

  • DOI: https://doi.org/10.1007/BFb0104380

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66435-2

  • Online ISBN: 978-3-540-48313-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics