Skip to main content

Nuclear physics with neural networks

  • Conference paper
  • First Online:
Scientific Applications of Neural Nets

Part of the book series: Lecture Notes in Physics ((LNP,volume 522))

Abstract

This article surveys modeling and prediction of various nuclidic properties with feedforward artificial neural networks. Special emphasis is placed on neural network modeling of nuclear ground state masses, the cleanprop algorithm for training neural networks on data with error bars, global neural network models of nuclear stability and branching ratios of decay of unstable nuclides, and higher-order probabilistic perceptrons for classifying nuclides as stable or unstable. The various network architectures and training algorithms devised for and successfully tested in these applications are discussed in detail and the best of numerical neural network results are presented.

Permanent address

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Athanassopoulos, S., Mavrommatis, E., Gernoth, K. A., Clark, J. W. (1998): To be published.

    Google Scholar 

  • Clark, J. W., Gazula, S., Gernoth, K. A., Hasenbein, J., Prater, J. S., Bohr, H. (1992): Collective Computation of Many-Body Properties by Neural Networks. Recent Progress in Many-Body Theories, Vol. 3, edited by Ainsworth, T. L., Campbell, C. E., Clements, B. E., Krotscheck, E. (Plenum Press, New York), 371–386.

    Google Scholar 

  • Clark, J. W., Gernoth, K. A. (1992): Teaching Neural Networks to do Science. Structure: From Physics to General Systems, Vol. 2, edited by Marinaro, M., Scarpetta, G. (World Scientific, Singapore), 64–77.

    Google Scholar 

  • Clark, J. W., Gernoth, K. A. (1995): Statistical Modeling of Nuclear Masses Using Neural Network Algorithms. Condensed Matter Theories, Vol. 10, edited by Casas, M., de Llano, M., Navarro, J., Polls, A. (Nova Science Publishers, Commack, NY), 317–333.

    Google Scholar 

  • Clark, J. W., Gernoth, K. A., Dittmar, S., Ristig, M. L. (1999): Higher-Order Probabilistic Perceptrons as Bayesian Inference Engines. To be published.

    Google Scholar 

  • Clark, J. W., Gernoth, K. A., Ristig, M. L. (1994): Connectionist Many-Body Phenomenology. Condensed Matter Theories, Vol. 9, edited by Clark, J. W., Shoaib, K. A., Sadiq, A. (Nova Science Publishers, Commack, NY), 519–537.

    Google Scholar 

  • Clark, J. W., Gernoth, K. A., Ristig, M. L. (1995): Connectionist Statistical Inference. Recent Progress in Many-Body Theories, Vol. 4, edited by Schachinger, E., Mitter, H., Sormann, H. (Plenum Press, New York), 283–292.

    Google Scholar 

  • Duda, R. O., Hart, P. E. (1973): Pattern Classification and Scene Analysis (Wiley, New York).

    MATH  Google Scholar 

  • Gazula, S., Clark, J. W., Bohr, H. (1992): Learning and Prediction of Nuclear Stability by Neural Networks. Nucl. Phys. A 540, 1–26.

    Article  ADS  Google Scholar 

  • Gernoth, K. A., Clark, J. W. (1995a): Neural Networks that Learn to Predict Probabilities: Global Models of Nuclear Stability and Decay. Neural Networks 8, 291–311.

    Article  Google Scholar 

  • Gernoth, K. A., Clark, J. W. (1995b): A Modified Backpropagation Algorithm for Training Neural Networks on Data with Error Bars. Comput. Phys. Commun. 88, 1–22.

    Article  MATH  ADS  Google Scholar 

  • Gernoth, K. A., Clark, J. W. (1995c): Neural Network Models of Nuclear and Noisy Data. New Computing Techniques in Physics Research IV, edited by Denby, B., Perret-Galix, D. (World Scientific, Singapore), 425–430.

    Google Scholar 

  • Gernoth, K. A., Clark, J. W., Prater, J. S., Bohr, H. (1993): Neural Network Models of Nuclear Systematics. Phys. Lett. B 300, 1–7.

    Article  ADS  Google Scholar 

  • Hertz, J., Krogh, A., Palmer, R. G. (1991): Introduction to the Theory of Neural Computation (Addison-Wesley, Redwood City, CA).

    Google Scholar 

  • Kalman, B. L. (1994): Private Communication to Clark, J. W., Washington University, St. Louis, MO, USA.

    Google Scholar 

  • Kullback, S. (1959): Information Theory and Statistics (Wiley, New York).

    MATH  Google Scholar 

  • Lönnblad, L., Peterson, C., Pi, H., Rögnvaldsson (1991): Self-Organizing Networks for Extracting Jet Features. Comput. Phys. Commun. 67, 193–209.

    Article  MATH  ADS  Google Scholar 

  • Masson, P. J., Jänecke, J. (1988): Masses from an Inhomogeneous Partial Difference Equation with Higher-Order Isospin Contributions. At. Data Nucl. Data Tables 39, 273–280.

    Article  ADS  Google Scholar 

  • Mathews, B. W. (1975): Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme. Biochim. Biophys. Acta 405, 442–451.

    Google Scholar 

  • Mathews, J., Walker, J. L. (1970): Mathematical Methods of Physics (Benjamin, New York).

    Google Scholar 

  • Navrommatis, E., Dakos, A., Gernoth, K. A., Clark, J. W. (1998): Calculations of Nuclear Half-Lives with Neural Nets. Condensed Matter Theories, Vol. 13, edited by da Providência, J., Malik, F. B. (Nova Science Publishers, Commack, NY), in press.

    Google Scholar 

  • Minsky, H., Papert, S. (1969): Perceptrons (MIT Press, Cambridge, MA).

    MATH  Google Scholar 

  • Möller, P., Nix, J. R. (1981): Nuclear Mass Formula with a Yukawa-plus-Exponential Macroscopic Model in a Folded-Yukawa Single-Particle Potential. Nucl. Phys. A 361, 117–146.

    Article  ADS  Google Scholar 

  • Möller, P., Nix, J. R. (1988): Nuclear Masses from a Unified Macroscopic-Microscopic Model. At. Data Nucl. Data Tables 39, 213–223.

    Article  ADS  Google Scholar 

  • Möller, P., Nix, J. R. (1994): Stability of Heavy and Superheavy Elements. J. Phys. G 20, 1681–1747.

    Article  ADS  Google Scholar 

  • Möller, P., Nix, J. R., Myers, W. D., Swiatecki, W. J. (1992): The Coulomb Redistribution Energy as Revealed by a Refined Study of Nuclear Masses. Nucl. Phys. A 536, 61–71.

    Article  ADS  Google Scholar 

  • Müller, B., Reinhardt, J., Strickland, M. T. (1995): Neural Networks (Springer-Verlag, Berlin).

    MATH  Google Scholar 

  • Myers, W. D., Swiatecki, W. J. (1966): Nuclear Masses and Deformations. Nucl. Phys. 81, 1–60.

    Google Scholar 

  • Qian, M., Gong, G., Clark, J. W. (1991): Relative Entropy and Learning Rules. Phys. Rev. A 43, 1061–1070.

    Article  ADS  Google Scholar 

  • Rummelhart, D. E., McClelland, J. L., and the PDP Research Group (1986): Explorations in the Microstructure of Cognition, Vols. 1 and 2 (MIT Press, Cambridge, MA).

    Google Scholar 

  • Stolorz, P., Lapedes, A., Xia, Y. (1991): Predicting Protein Secondary Structure Using Neural Net and Statistical Methods. J. Molec. Biol. 225, 363–377.

    Article  Google Scholar 

  • von Mises, R. (1964): Mathematical Theory of Probability and Statistics (Academic Press, New York).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John W. Clark Thomas Lindenau Manfred L. Ristig

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Gernoth, K.A. (1999). Nuclear physics with neural networks. In: Clark, J.W., Lindenau, T., Ristig, M.L. (eds) Scientific Applications of Neural Nets. Lecture Notes in Physics, vol 522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104279

Download citation

  • DOI: https://doi.org/10.1007/BFb0104279

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65737-8

  • Online ISBN: 978-3-540-48980-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics