Advertisement

Universal N=4 non-perturbative thermal instabilities; the high-T string phases

  • Costas Kounnas
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)

Abstract

Using the properties of gauged N=4 supergravity, we show that it is possible to derive a universal thermal effective potential that describes all possible high-temperature instabilities of the known N=4 superstrings. These instabilities are due to non-perturbative dyonic modes, which become tachyonic in a region of the thermal moduli space M={s, t, u}; M is common to all non-perturbative dual-equivalent N=4 superstrings in five dimensions. We analyse the non-perturbative thermal potential and show the existence of a phase transition at high temperatures corresponding to a condensation of 5-branes. This phase is described in detail, using an effective non-critical string theory.

Keywords

Heterotic String Effective Field Theory Mass Formula Superconformal Symmetry String Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hagedorn, Nuovo Cimento Suppl. 3 (1965) 147Google Scholar
  2. 1a.
    S. Fubini and G. Veneziano, Nuovo Cimento 64A (1969) 811ADSGoogle Scholar
  3. 1b.
    K. Bardakci and S. Mandelstam, Phys. Rev. 184 (1969) 1640CrossRefADSGoogle Scholar
  4. 1c.
    K. Huang and S. Weinberg, Phys. Rev. Lett. 25 (1970) 895.CrossRefADSGoogle Scholar
  5. 2.
    B. Sathiapalan, Phys. Rev. D35 (1987) 3277ADSGoogle Scholar
  6. 2a.
    Ya. Kogan, JETP Lett. 45 (1987) 709.ADSMathSciNetGoogle Scholar
  7. 3.
    J. J. Atick and E. Witten, Nucl. Phys. B310 (1988) 291.CrossRefADSMathSciNetGoogle Scholar
  8. 4.
    C. Kounnas and B. Rostand, Nucl. Phys. B341 (1990) 641.CrossRefADSGoogle Scholar
  9. 5.
    I. Antoniadis and C. Kounnas, Phys. Lett. B261 (1991) 369.ADSGoogle Scholar
  10. 6.
    E. Alvarez, Phys. Rev. D31 (1985) 418ADSMathSciNetGoogle Scholar
  11. 6a.
    B. Sundborg, Nucl. Phys. B254 (1985) 583CrossRefADSGoogle Scholar
  12. 6b.
    M. J. Bowick and L. C. R. Wijewardhana, PHys. Rev. Lett. 54 (1985) 2485CrossRefADSGoogle Scholar
  13. 6c.
    S. H.-H. Tye, Phys. Lett. B158 (1985) 388.ADSGoogle Scholar
  14. 7.
    I. Antoniadis, J. Ellis and D. V. Nanopoulos, Phys. Lett. B199 (1987) 402.ADSMathSciNetGoogle Scholar
  15. 8.
    M. Axenides, S. D. Ellis and C. Kounnas, Phys. Rev. D37 (1988) 2964.ADSMathSciNetGoogle Scholar
  16. 9.
    I. Antoniadis, J.-P. Derendinger and C. Kounnas, hep-th /9902032.Google Scholar
  17. 10.
    J. H. Schwarz and A. Sen, Phys. Lett. B312 (1993) 105; Nucl. Phys. B411 (1994) 35ADSMathSciNetGoogle Scholar
  18. 10a.
    A. Sen, Phys. Lett. B303 (1993) 22; Phys. Lett. B329 (1994) 217; Nucl. Phys. B329 (1994) 217ADSGoogle Scholar
  19. 10b.
    M. J. Duff, J. T. Liu and J. Rahmfeld, Nucl. Phys. B459 (1996) 125; M. Cvetic and D. Youm, Phys. Rev. D53 (1996) R584; Phys. Lett. B359 (1995) 87CrossRefADSMathSciNetGoogle Scholar
  20. 10c.
    K.-L. Chan and M. Cvetic, Phys. Lett. B375 (1996) 98ADSMathSciNetGoogle Scholar
  21. 10d.
    M. Cvetic and A. Tseytlin, Phys. Lett. B366 (1996) 95; Phys. Rev. D53 (1996) 5619ADSMathSciNetGoogle Scholar
  22. 10e.
    G. L. Cardoso, G. Curio, D. Lüst, T. Mohaupt and S.-J. Rey, Nucl. Phys. B464 (1996) 18.CrossRefADSGoogle Scholar
  23. 11.
    R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B484 (1997) 543; Nucl. Phys. B486 (1997) 77; Nucl. Phys. B486 (1997) 89.CrossRefADSMathSciNetGoogle Scholar
  24. 12.
    C. Kounnas, Nucl. Phys. B58 [Proc. Suppl.] (1997) 57MathSciNetGoogle Scholar
  25. 12a.
    E. Kiritsis and C. Kounnas, Nucl. Phys. B503 (1997) 117.CrossRefADSMathSciNetGoogle Scholar
  26. 13.
    C. M. Hull and P. K. Townsend, Nucl. Phys. B438 (1995) 109.CrossRefADSMathSciNetGoogle Scholar
  27. 14.
    E. Witten, Nucl. Phys. B443 (1995) 85.CrossRefADSMathSciNetGoogle Scholar
  28. 15.
    A. Sen, Nucl. Phys. B450 (1995) 103.CrossRefADSGoogle Scholar
  29. 16.
    E. Witten, Nucl. Phys. B443 (1995) 85CrossRefADSMathSciNetGoogle Scholar
  30. 16a.
    M. J. Duff, R. Minasian and E. Witten, Nucl. Phys. B465 (1996) 413CrossRefADSMathSciNetGoogle Scholar
  31. 16b.
    N. Seiberg and E. Witten, Nucl. Phys. B471 (1996) 121.CrossRefADSMathSciNetGoogle Scholar
  32. 17.
    J.-P. Derendinger and S. Ferrara, in: Supersymmetry and Supergravity’ 84, ed. by B. de Wit, P. Fayet and P. van Nieuwenhuizen (World Scientific, Singapore, 1984), p. 159.Google Scholar
  33. 18.
    A. H. Chamseddine, Nucl. Phys. B185 (1981) 403CrossRefADSGoogle Scholar
  34. 19.
    M. de Roo, Nucl. Phys. B255 (1985) 515; Phys. Lett. B156 (1985) 331ADSGoogle Scholar
  35. 19a.
    E. Bergshoeff, I.G. Koh and E. Sezgin, Phys. Lett. B155 (1985) 71.ADSGoogle Scholar
  36. 20.
    S. Ferrara and C. Kounnas, Nucl. Phys. B328 (1989) 406.CrossRefADSMathSciNetGoogle Scholar
  37. 21.
    C. Kounnas and M. Porrati, Nucl. Phys. B310 (1988) 355CrossRefADSMathSciNetGoogle Scholar
  38. 21a.
    S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, Nucl. Phys. B318 (1989) 75.CrossRefADSMathSciNetGoogle Scholar
  39. 22.
    M. Porrati and F. Zwirner, Nucl. Phys. B326 (1989) 162.CrossRefADSMathSciNetGoogle Scholar
  40. 23.
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Nucl. Phys. B212 (1983) 413.CrossRefADSGoogle Scholar
  41. 24.
    J.-P. Derendinger, these proceedings, hep-th/9902107.Google Scholar
  42. 25.
    S. Ferrara, C. Kounnas, D. Lüst and F. Zwirner, Nucl. Phys. B365 (1991) 431.CrossRefADSGoogle Scholar
  43. 26.
    E. Fradkin and A. Tseytlin, Nucl. Phys. B261 (1985) 1CrossRefADSMathSciNetGoogle Scholar
  44. 26a.
    C. G. Callan, D. Friedan, E. Martinec and M. Perry, Nucl. Phys. B262 (1985) 593.CrossRefADSMathSciNetGoogle Scholar
  45. 27.
    C. Kounnas, PHys. Lett. B321 (1994) 26.ADSMathSciNetGoogle Scholar
  46. 28.
    I. Antoniadis, S. Ferrara and C. Kounnas, Nucl. Phys. B421 (1994) 34.MathSciNetGoogle Scholar
  47. 29.
    I. Antoniadis, C. P. Bachas and C. Kounnas, Nucl. Phys. B289 (1987) 87CrossRefADSMathSciNetGoogle Scholar
  48. 29a.
    H. Kawai, D. C. Lewellen and S. H.-H. Tye, Nucl. Phys. B288 (1987) 1.CrossRefADSMathSciNetGoogle Scholar
  49. 30.
    A. Bilal and J.-L. Gervais, Phys. Lett. B177 (1986) 313; Phys. Lett. B187 (1987) 39; Nucl. Phys. B293 (1987) 1ADSMathSciNetGoogle Scholar
  50. 30a.
    D. Kutasov and N. Seiberg, Phys. Lett. B251 (1990) 67.ADSMathSciNetGoogle Scholar
  51. 31.
    C. Kounnas, M. Porrati and B. Rostand, Phys. Lett. B258 (1991) 61.ADSMathSciNetGoogle Scholar
  52. 32.
    E. Kiritsis, C. Kounnas and D. Lüst, Phys. Lett. B331 (1994) 321; Int. J. Mod. Phys. A9 (1994) 1361.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Costas Kounnas
    • 1
    • 2
  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.LPTH ENSParis Cedex 05France

Personalised recommendations