Advertisement

Spin dependent D-brane interactions and scattering amplitudes in matrix theory

  • Jose F. Morales
  • Jan C. Plefka
  • Claudio A. Scrucca
  • Marco Serone
  • Andrew K. Waldron
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)

Abstract

Spin interactions between two moving Dp-branes are analyzed using the Green-Schwarz formalism of boundary states. This approach turns out to be extremely efficient to compute all the spin effects related by supersymmetry to the leading v 4/r 7−p term. All these terms are shown to be scale invariant, supporting a matrix model description of supergravity interactions.

By employing the LSZ reduction formula for matrix theory and the mentioned supersymmetric potential for D0-branes, we compute the t-pole of graviton-graviton and three form-three form scattering in matrix theory. The results are found to be in complete agreement with tree level supergravity in the corresponding kinematical regime and provide, moreover, an explicit map between these degrees of freedom in both theories.

Keywords

Matrix Theory Vertex Operator Fermionic Zero Mode Spin Effect Kinematical Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polchinski, J. (1995): Phys. Rev. Lett. 75, 4724–4727zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Harvey, J.A. (1998): Nucl. Phys. Proc. Suppl. B68, 113–118CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Green, M.B., Gutperle, M. (1996): Nucl. Phys. B476, 484–514CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Morales, J.F., Scrucca, C.A., Serone, M. (1998): Phys. Lett. B417 233–239ADSMathSciNetGoogle Scholar
  5. 5.
    Morales, J.F., Scrucca, C.A., Serone, M. (1998): Nucl. Phys. B534, 223–249CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Green, M.B., Schwarz, J.H., Witten, E. (1987): Superstring theory: volume 2, Cambridge University PressGoogle Scholar
  7. 7.
    Banks, T., Fischler, W., Shenker, S., Susskind, L. (1997): Phys. Rev. D55, 5112–5128ADSMathSciNetGoogle Scholar
  8. 8.
    Kraus, P. (1998): Phys. Lett. B419, 73–78ADSMathSciNetGoogle Scholar
  9. 8a.
    Barrio, M., Helling, R., Polhemus, G. 1998): JHEP 05, 012CrossRefADSMathSciNetGoogle Scholar
  10. 8b.
    McArthur, I.N. (1998): Nucl. Phys. B534, 183–201CrossRefADSMathSciNetGoogle Scholar
  11. 9.
    Banks, T. (1998): Nucl. Phys. Proc. Suppl. B67, 180–224CrossRefADSGoogle Scholar
  12. 10.
    Plefka, J.C., Waldron, A. (1998): Nucl. Phys. B512, 460–484CrossRefADSMathSciNetGoogle Scholar
  13. 11.
    Plefka, J.C., Serone, M., Waldron, A. (1998): Phys. Rev. Lett. 81, 2866–2869zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 12.
    Plefka, J.C., Serone, M., Waldron, A. (1998): JHEP 11, 010CrossRefADSMathSciNetGoogle Scholar
  15. 13.
    Susskind, L. (1997): Another conjecture about M(atrix) theory, hep-th/9704080Google Scholar
  16. 14.
    Bachas, C. (1996): Phys. Lett. B374, 37–42ADSMathSciNetGoogle Scholar
  17. 15.
    Sannan, S. (1986): Phys. Rev. D34, 1749–1758ADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Jose F. Morales
    • 1
  • Jan C. Plefka
    • 2
  • Claudio A. Scrucca
    • 3
  • Marco Serone
    • 4
  • Andrew K. Waldron
    • 5
  1. 1.Department of PhysicsUniversity “Tor Vergata” of RomeRomeItaly
  2. 2.Albert-Einstein-Institut, Max-Planck-Institut für GravitationsphysikPotsdamGermany
  3. 3.Sektion PhysikLudwig Maximilian University of MunichMunichGermany
  4. 4.Department of MathematicsUniversity of AmsterdamAmsterdamThe Netherlands
  5. 5.NIKHEFAmsterdamThe Netherlands

Personalised recommendations