Duality in string cosmology

  • Ram Brustein
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)


Scale factor duality, a truncated form of time dependent T-duality, is a symmetry of string effective action in cosmological backgrounds interchanging small and large scale factors. The symmetry suggests a cosmological scenario (“pre-big-bang”) in which two duality related branches, an inflationary branch and a decelerated The use of scale factor duality in the analysis of the higher derivative corrections to the effective action, and consequences for the nature of exit transition, between the inflationary and decelerated branches, are outlined. A new duality symmetry is obeyed by the lowest order equations for inhomogeneity perturbations which always exist on top of the homogeneous and isotropic background. In some cases it corresponds to a time dependent version of S-duality, interchanging weak and strong coupling and electric and magnetic degrees of freedom, and in most cases it corresponds to a time dependent mixture of both S-, and T-duality. The energy spectra obtained by using the new symmetry reproduce known results of produced particle spectra, and can provide a useful lower bound on particle production when our knowledge of the detailed dynamical history of the background is approximate or incomplete.


String Scale High Derivative Correction Hamiltonian Density Duality Symmetry Cosmological Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Veneziano, Phys. Lett. B265 (1991) 287.ADSMathSciNetGoogle Scholar
  2. 2.
    M. Gasperini and G. Veneziano, Astropart. Phys. 1 (1993) 317.CrossRefADSGoogle Scholar
  3. 3.
    R. Brustein and R. Madden, Phys. Lett. B410 (1997) 110.ADSMathSciNetGoogle Scholar
  4. 4.
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, 1984Google Scholar
  5. 4a.
    V. F. Mukhanov, A. H. Feldman and R. H. Brandenberger, Phys. Rep. 215 (1992) 203.CrossRefADSMathSciNetGoogle Scholar
  6. 5.
    R. Brustein, M. Gasperini and G. Veneziano, Phys. Lett. B431 (1998) 277.ADSMathSciNetGoogle Scholar
  7. 6.
    K.A. Meissner and G. Veneziano, Phys. Lett. B267 (1991) 33ADSMathSciNetGoogle Scholar
  8. 6a.
    A.A. Tseytlin Mod. Phys. Lett. A6 (1991) 1721ADSMathSciNetGoogle Scholar
  9. 6b.
    A. Sen, Phys. Lett. B271 (1991) 295ADSGoogle Scholar
  10. 6c.
    J. Maharana and J. H. Schwarz, Nucl. Phys. B390 (1993) 3.CrossRefADSMathSciNetGoogle Scholar
  11. 7.
    R. Brustein and G. Veneziano, Phys. Lett. B329 (1994) 429ADSGoogle Scholar
  12. 7a.
    N. Kaloper, R. Madden and K.A. Olive, Nucl. Phys. B452 (1995) 677.CrossRefADSGoogle Scholar
  13. 8.
    M. Gasperini, M. Maggiore and G. Veneziano, Nucl. Phys. B494 (1997) 315.CrossRefADSMathSciNetGoogle Scholar
  14. 9.
    R. Brustein and R. Madden, Phys. Rev. D57 (1998) 712.ADSGoogle Scholar
  15. 10.
    R. Brustein and R. Madden, hep-th/9901044.Google Scholar
  16. 11.
    K. Forger, B. A. Ovrut, S. Theisen and D. Waldram, Phys. Lett. B388 (1996) 512.ADSMathSciNetGoogle Scholar
  17. 12.
    N. Kaloper and K. Meissner, Phys. Rev. D56 (1997) 7940ADSMathSciNetGoogle Scholar
  18. 12a.
    M. Maggiore, Nucl. Phys. B525 (1998) 413.CrossRefADSGoogle Scholar
  19. 13.
    C. Kounnas, private communication.Google Scholar
  20. 14.
    M. Gasperini, Phys. Lett. B327 (1994) 214ADSGoogle Scholar
  21. 14a.
    M. Gasperini and G. Veneziano, Phys. Rev. D50 (1994) 2519.ADSGoogle Scholar
  22. 15.
    R. Brustein, M. Gasperini, M. Giovannini and G. Veneziano, Phys. Lett. B361 (1995) 45.ADSMathSciNetGoogle Scholar
  23. 16.
    M. Gasperini, M. Giovannini and G. Veneziano, Phys. Rev. Lett. 75 (1995) 3796CrossRefADSGoogle Scholar
  24. 16a.
    D. Lemoine and M. Lemoine, Phys. Rev. D52 (1995) 1955.ADSGoogle Scholar
  25. 17.
    E. J. Copeland, R. Easther and D. Wands, Phys. Rev. D56 (1997) 874ADSGoogle Scholar
  26. 17a.
    E. J. Copeland, J. E. Lidsey and D. Wands, Nucl. Phys. B506 (1997) 407.CrossRefADSMathSciNetGoogle Scholar
  27. 18.
    R. Brustein and M. Hadad Phys. Rev. D57 (1998) 725ADSGoogle Scholar
  28. 18a.
    A. Buonanno, K. Meissner, C. Ungarelli and G. Veneziano, J.High Energy Phys. 01 (1998) 004.CrossRefADSMathSciNetGoogle Scholar
  29. 19.
    R. Durrer, M. Gasperini, M. Sakellariadou and G. Veneziano, Phys. Lett. B436 (1998) 66.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Ram Brustein
    • 1
  1. 1.Department of PhysicsBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations