Supersymmetric 3-cycles for N=1 brane box models

  • Andreas Karch
  • Dieter Lüst
  • André Miemiec
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)


In this paper we discuss the strong coupling limit of chiral N=1 supersymmetric gauge theory via their embedding into M-theory. In particular we focus on N=1 brane box models and show that after a T-duality transformation their M-theory embedding is described by supersymmetric 3-cycles. Brane box models with uniform bending lead to 3-cycles which consist out of intersecting Seiberg-Witten curves. We discuss a few aspects of the intersection pattern in case of two intersecting tori which corresponds to N=1 SUSY QCD with N c =N f =4.


Gauge Theory Gauge Group Riemann Surface Coulomb Branch Supersymmetric Gauge Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Seiberg and E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B426 (1994) 19–52.CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    A. Karch, D. Lüst, and D. Smith, “Equivalence of geometric engineering and Hanany-Witten via fractional branes,” Nucl. Phys. B533 (1998) 348.CrossRefADSGoogle Scholar
  3. 3.
    A. Klemm, W. Lerche, P. Mayr, C. Vafa and N. Warner, “Selfdual strings and N=2 supersymmetric field theory,” Nucl. Phys. B477 (1996) 746.CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics,” Nucl. Phys. B492 (1997) 152–190.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    E. Witten, “Solutions of four-dimensional field theories via M theory,” Nucl. Phys. B500 (1997) 3.CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    K. Hori, H. Ooguri, and Y. Oz, “Strong coupling dynamics of four-dimensional N=1 gauge theories from M theory five-brane,” Adv. Theor. Math. Phys. 1 (1998) 1–52MathSciNetGoogle Scholar
  7. 6a.
    E. Witten, “Branes and the dynamics of QCD,” Nucl. Phys. B507 (1997) 658CrossRefADSMathSciNetGoogle Scholar
  8. 6b.
    A. Brandhuber, N. Itzhaki, V. Kaplunovsky, J. Sonnenschein and S. Yankielowicz, “Comments on the M theory approach to N=1 SQCD and brane dynamics,” Phys. Lett. B415 (1997) 127.ADSMathSciNetGoogle Scholar
  9. 7.
    A. Hanany and A. Zaffaroni, “On the realization of chiral four-dimensional gauge theories using branes,” hep-th/9801134.Google Scholar
  10. 8.
    K. Landsteiner, E. Lopez and D. A. Lowe, “Duality of chiral N=1 supersymmetric gauge theories via branes,” hep-th/9801002Google Scholar
  11. 8a.
    I. Brunner, A. Hanany, A. Karch, and D. Lüst, “Brane dynamics and chiral nonchiral transitions,” Nucl. Phys. D528 (1998) 197.CrossRefADSGoogle Scholar
  12. 9.
    A. Karch, D. Lüst, A. Miemiec, “N=1 Supersymmetric Gauge Theories and Supersymmetric 3-cycles,” hep-th/9810254.Google Scholar
  13. 10.
    M. Aganagic, A. Karch, D. Lüst and A. Miemiec, paper in preparation.Google Scholar
  14. 11.
    G. W. Gibbons and G. Papadopoulos, “Calibrations and intersecting branes,” hep-th/9803163; J. P. Gauntlett, N. D. Lambert and P. C. West, “Branes and calibrated geometries,” hep-th/9803216.Google Scholar
  15. 12.
    M. Douglas and G. Moore, “D-branes, Quivers and ALE instantons,” hep-th/9603167.Google Scholar
  16. 13.
    I. R. Klebanov, E. Witten, “Superconformal Field Theory on Threebranes at a Calabi-Yau Singularity,” Nucl.Phys. B536 (1998) 199–218.CrossRefADSMathSciNetGoogle Scholar
  17. 14.
    A. Hanany, A. M. Uranga, “Brane Boxes and Branes on Singularities,” J. High Energy Phys. 9805 (1998) 013; A. M. Uranga, “Brane Configurations for Branes at Conifolds,” hep-th/9811004.CrossRefADSMathSciNetGoogle Scholar
  18. 15.
    A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, “Simple singularities and N=2 supersymmetric Yang-Mills theory,” Phys. Lett B344 (1995) 169ADSMathSciNetGoogle Scholar
  19. 15a.
    P.C. Argyres and A.E. Faraggi, “The vaccum structure and spectrum of N=2 supersymmetruc SU(n) gauge theory,” Phys. Rev. Lett. 74 (1995) 3931.CrossRefADSGoogle Scholar
  20. 16.
    R. G. Leigh and M. J. Strassler, “Exactly marginal operators and duality in four-dimensional N=1 supersymmetric gauge theory,” Nucl. Phys. B447 (1995) 95–136.CrossRefADSMathSciNetGoogle Scholar
  21. 17.
    A. Hanany, M. J. Strassler, and A. M. Uranga, “Finite theories and marginal operators on the brane,” hep-th/9803086.Google Scholar
  22. 18.
    E. G. Gimon and M. Gremm, “A note on brane boxes at finite string coupling,” hep-th/9803033.Google Scholar
  23. 19.
    A. Hanany and A. M. Uranga, “Brane boxes and branes on singularities,” hep-th/9805139.Google Scholar
  24. 20.
    K. Becker, M. Becker and A. Strominger, “Five-branes, membranes and nonperturbative string theory,” hep-th/9507158.Google Scholar
  25. 21.
    R. Harvey and H. B. Lawson “Calibrated geometries,” Acta Mathematica 148.Google Scholar
  26. 22.
    J. M. Souriau “Construction explicite de l’indice de Maslov”Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Andreas Karch
    • 1
  • Dieter Lüst
    • 2
  • André Miemiec
    • 2
  1. 1.Center for Theoretical PhysicsMITCambridgeUSA
  2. 2.Institut für PhysikHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations