Advertisement

U-duality and M-theory, an algebraic approach

  • Niels A. Obers
  • Boris Pioline
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)

Abstract

Based on our work [1], we discuss how U-duality arises as an exact symmetry of M-theory from T-duality and 11D diffeomorphism invariance. A set of Weyl generators are shown to realize the Weyl group of SO(d, d, Z) and E d(d) , while Borel generators extend these finite groups into the full T- and U-duality groups. We discuss how the BPS states fall into various representations, and obtain duality invariant mass formulae, relevant for the computation of exact string amplitudes. The realization of U-duality symmetry in Matrix gauge theory is also considered.

Keywords

Gauge Theory Modulus Space Weyl Group Mapping Class Group Dehn Twist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Obers, B. Pioline, and E. Rabinovici Nucl. Phys. B525 (1998) 163, hep-th/9712084; N. A. Obers and B. Pioline hep-th/9809039, to appear in Phys. Rept.CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    P. K. Townsend Phys. Lett. B350 (1995) 184, hep-th/9501068; E. Witten hep-th/9507121.ADSMathSciNetGoogle Scholar
  3. 3.
    M. B. Green and M. Gutperle Nucl. Phys. B498 (1997) 195, hep-th/9701093.CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    N. Berkovits hep-th/9709116Google Scholar
  5. 4a.
    B. Pioline Phys. Lett. B431 (1998) 73, hep-th/9804023; M. B. Green and S. Sethi hep-th/9808061.ADSMathSciNetGoogle Scholar
  6. 5.
    E. Kiritsis and B. Pioline Nucl. Phys. B508 (1997) 509, hep-th/9707018; N. A. Obers and B. Pioline, work in progress.CrossRefADSMathSciNetGoogle Scholar
  7. 6.
    C. Bachas, C. Fabre, E. Kiritsis, N. A. Obers, and P. Vanhove Nucl. Phys. B509 (1998) 33, hep-th/9707126CrossRefADSMathSciNetGoogle Scholar
  8. 6a.
    B. Pioline and E. Kiritsis Phys. Lett. B418 (1998) 61, hep-th/9710078; P. Vanhove, hep-th/9712079; B. Pioline, hep-th/9712155.ADSMathSciNetGoogle Scholar
  9. 7.
    C. M. Hull and P. K. Townsend Nucl. Phys. B451 (1995) 525, hep-th/9505073.CrossRefADSMathSciNetGoogle Scholar
  10. 8.
    E. Cremmer, B. Julia in Superspace and Supergravity, S. W. Hawking and M. Rocek, eds. Cambridge University Press, 1981.Google Scholar
  11. 9.
    S. Elitzur, A. Giveon, D. Kutasov, and E. Rabinovici Nucl. Phys. B509 (1998) 122, hep-th/9707217.CrossRefADSMathSciNetGoogle Scholar
  12. 10.
    T. Banks, W. Fischler, S. H. Shenker, and L. Susskind Phys. Rev. D55 (1997) 5112, hep-th/9610043; L. Susskind hep-th/9704080ADSMathSciNetGoogle Scholar
  13. 10a.
    A. Sen Adv. Theor. Math. Phys. 2 (1998) 51, 1998, hep-th/9709220zbMATHMathSciNetGoogle Scholar
  14. 10b.
    N. Seiberg Phys. Rev. Lett. 79 (1997) 3577 hep-th/9710009.zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 11.
    M. Blau and M. O’Loughlin Nucl. Phys. B525 (1998) 182, hep-th/9712047CrossRefADSMathSciNetGoogle Scholar
  16. 11a.
    C. M. Hull J. High Energy Phys. 9807 (1998) 018, hep-th/9712075.CrossRefADSMathSciNetGoogle Scholar
  17. 12.
    R. Dijkgraaf, E. Verlinde, and H. Verlinde Nucl. Phys. B486 (1997) 89, hep-th/9604055.CrossRefADSMathSciNetGoogle Scholar
  18. 13.
    L. Susskind hep-th/9611164Google Scholar
  19. 13a.
    O. J. Ganor, S. Ramgoolam, and W. Taylor IV Nucl. Phys. B492 (1997) 191, hep-th/9611202.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Niels A. Obers
    • 1
  • Boris Pioline
    • 2
  1. 1.Nordita and Niels Bohr InstituteCopenhagenDanmark
  2. 2.Centre de Physique Théorique, École polytechniquePalaiseauFrance

Personalised recommendations