Branes and the WDVV equation

  • Jose M. Isidro
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)


A wide class of Seiberg-Witten models constructed by M-theory techniques and described by non-hyperelliptic Riemann surfaces are shown to possess an associative algebra of holomorphic differentials. This is a first step towards proving that also these models satisfy the Witten-Dijkgraaf-Verlinde-Verlinde equation. In this way, similar results known for simpler Seiberg-Witten models (described by hyperelliptic Riemann surfaces and constructed without recourse to M-theory) are extended to certain non-hyperelliptic cases constructed in M-theory.


Gauge Group Riemann Surface Associative Algebra Coulomb Branch Hyperelliptic Involution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Witten, Nucl. Phys. B500 (1997) 3.CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    For a review see, e.g., L. Alvarez-Gaumé and F. Zamora (hep-th/9709180).Google Scholar
  3. 3.
    K. Landsteiner and E. López, Nucl. Phys. B516 (1998) 273.CrossRefADSGoogle Scholar
  4. 4.
    E. Witten, Surv. Diff. Geom. 1 (1991) 243MathSciNetGoogle Scholar
  5. 4a.
    R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B352 (1991) 59CrossRefADSMathSciNetGoogle Scholar
  6. 4b.
    B. Dubrovin, Nucl. Phys. B379 (1992) 627.CrossRefADSMathSciNetGoogle Scholar
  7. 5.
    G. Bonelli and M. Matone, Phys. Rev. Lett. 77 (1996) 4712.CrossRefADSMathSciNetGoogle Scholar
  8. 6.
    A. Marshakov, A. Mironov and A. Morozov, Phys. Lett. B389 (1996) 43; Mod. Phys. Lett. A 12 (1997) 773; (hep-th/9701123).ADSMathSciNetGoogle Scholar
  9. 7.
    J.M. Isidro (hep-th/9805051), to appear in Nucl. Phys. B.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Jose M. Isidro
    • 1
  1. 1.Dipartimento di Fisica “G. Galilei”PadovaItaly

Personalised recommendations