On higher order α′ corrections to black brane geometries

  • Jacek Paweclzyk
  • Stefan Theisen
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)


We remark on the computation of O(α3) corrections to the (non-extremal) Dp-brane solutions. We present the explicit solutions to this order for p=3 in the near horizon limit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200zbMATHMathSciNetADSGoogle Scholar
  2. 2.
    S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge Theory Correlators from Non-critical String Theory”, Phys. Lett. B428 1998 105, hep-th/9802109.ADSMathSciNetGoogle Scholar
  3. 3.
    E. Witten, “Anti-de-Sitter Space and Holography”, Adv. Theor. Math. Phys. 2 1998 253, hep-th/9802150.zbMATHMathSciNetGoogle Scholar
  4. 4.
    S. Gubser, I. Klebanov and A. Tseytlin, Coupling constant dependence in the thermodynamics of N=4 supersymmetric Yang-Mills theory, Nucl. Phys. B534 (1998) 202, hep-th/9805156CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    J. Pawelczyk and S. Theisen, AdS 4×S 5 black hole metric at O(α′3), JHEP.9809:010, 1998, hep-th/9808126Google Scholar
  6. 6.
    G. Horowitz and A. Strominger, Black Strings and p-Branes, Nucl. Phys. B360 (1991) 197CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. Green, contribution to this proceedings.Google Scholar
  8. 8.
    J. H. Brodie, M. Gutperle, String corrections to four point functions in the AdS/CFT correspondence, hep-th/9809067Google Scholar
  9. 9.
    Yi-hong Gao, Miao Li, Large N Strong/Weak Coupling Phase Transition and the Correspondence Principle, hep-th/9810053; A. A. Tseytlin, S. Yankielowicz, Free energy of N=4 super Yang-Mills in Higgs phase and non-extremal D3-brane interactions, hep-th/9809032Google Scholar
  10. 10.
    K. Landsteiner, String Corrections to the Hawking-Page Phase Transition, hep-th/9901143.Google Scholar
  11. 11.
    C. Csaki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, hep-th/9806021Google Scholar
  12. 11a.
    H. Ooguri, H. Robins and J. Tannenhauser, Glueballs and their Kaluza-Klein cousins, Phys. Lett. B437 (1998) 77, hep-th/9806171ADSMathSciNetGoogle Scholar
  13. 12.
    J. Greensite and P. Olesen, Remarks on the heavy quark potential in the supergravity approach, JHEP 9809 (1998) 009, hep-th/9806235; H. Dorn and H.J. Otto, qq potential from AdS-CFT relation at T≥0: dependence on orientation in space and higher curvature corrections, JHEP 9809 (1998) 021, hep-th/9807093 and contribution to these proceedingsGoogle Scholar
  14. 13.
    D. Polyakov, RR-dilaton interaction in a type IIB superstring, Nucl. Phys. B468 (1996) 155, hep-th/9512028CrossRefADSMathSciNetGoogle Scholar
  15. 14.
    M. Green and S. Sethi, Supersymmetry constraints on type IIB supergravity, hep-th/9808061Google Scholar
  16. 15.
    J. Pawelczyk and S. Theisen, unpublishedGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Jacek Paweclzyk
    • 1
    • 2
  • Stefan Theisen
    • 1
  1. 1.Institut für Theoretische PhysikUniversität MünchenGermany
  2. 2.Institute of Theoretical PhysicsWarsaw UniversityPoland

Personalised recommendations