Advertisement

2D Yang-Mills theory as a Matrix String theory

  • Marco Billò
  • Michele Caselle
  • Alessandro D’Adda
  • Paolo Provero
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)

Abstract

String-like states appear naturally in the spectrum of two-dimensional Yang-Mills theory (YM2) on a torus, quantized in the gauge where the field strength is diagonal. These states are completely analogous to the ones appearing in Matrix String theory, and originate from topological obstructions to a global smooth diagonalization.

Keywords

Partition Function Riemann Surface Wilson Loop Gauge Field Twisted Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Billó, M. Caselle, A. D’Adda and P. Provero, Matrix string states in pure 2d Yang Mills theories, hep-th/9809095, to be published in Nucl. Phys. B.Google Scholar
  2. 2.
    M. Caselle, A D’Adda, L. Magnea and S. Panzeri, Nucl. Phys. B416 (1994) 751.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    L. Motl, Proposals on nonperturbative superstring interactions, hep-th/9701025.Google Scholar
  4. 4.
    R. Dijkgraaf, E. Verlinde, H. Verlinde, Nucl. Phys. B500 (199?) 43.Google Scholar
  5. 5.
    M. Blau and G. Thompson Lectures on 2d Gauge Theories-Topological Aspects and Path Integral Techniques, Proc. 1993 Summer School in High Energy Physics and Cosmology, World Scientific, hep-th/9310144.Google Scholar
  6. 6.
    B. Rusakov, Mod. Phys. Lett. A5 (1990) 693.ADSMathSciNetGoogle Scholar
  7. 7.
    M. Blau and G. Thompson, Int. J. Mod. Phys. A7 (1992) 3781.ADSMathSciNetGoogle Scholar
  8. 8.
    E. Witten, J. Geom. Phys. 9 (1992) 303.zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    D. Gross, Nucl. Phys. B400 (1993) 161CrossRefADSGoogle Scholar
  10. 9a.
    D. Gross and W. Taylor IV, Nucl. Phys. B400 (1993) 181.CrossRefADSMathSciNetGoogle Scholar
  11. 10.
    J.E. Hetrick, Int. J. Mod. Phys. A9 (1994) 3153.ADSMathSciNetGoogle Scholar
  12. 11.
    S. B. Giddings, F. Hacquebord and Herman Verlinde, High Energy Scattering and D-Pair Creation in Matrix String Theory, hep-th/9804121. G. Bonelli, L. Bonora and F. Nesti, Matrix string theory, 2D instantons and affine Toda field theory, hep-th/9805071; String Interactions from Matrix String Theory, hep-th/9807232.Google Scholar
  13. 12.
    I. K. Kostov and P. Vanhove, Matrix String Partition Functions, hep-th/9809130.Google Scholar
  14. 13.
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, Nucl. Phys. B498 (1997) 467.CrossRefADSMathSciNetGoogle Scholar
  15. 14.
    M. Green and M. Gutperle, JHEP 01 (1998) 005.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Marco Billò
    • 1
  • Michele Caselle
    • 2
  • Alessandro D’Adda
    • 2
  • Paolo Provero
    • 2
  1. 1.Instituut voor theoretische fysicaKatholieke Universiteit LuevenLeuvenBelgium
  2. 2.Dipartimento di Fisica Teorica dell’Università di TorinoIstituto Nazionale di Fisica NucleareTorinoItaly

Personalised recommendations