Advertisement

On supergravity duals of N=1 SCFT in four dimensions

  • Alexandros Kehagias
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)

Abstract

We present D3-brane solutions in type IIB string theory which preserve 1/8 of supersymmetry. Their transverse space is Ricci-flat but not flat and in fact a cone over an appropriate five dimensional Einstein space X 5. Supersymmetry is preserved if X 5 is a U(1) bundle over a Kähler-Einstein complex surface S with positive first Chern class c 1>0. Their near-horizon geometry is described by AdS 5×X 5 and they should be the supergravity duals of certain four-dimensional superconformal field theories.

Keywords

Chern Class Pezzo Surface Horizon Geometry Transverse Space Kill Spinor Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Maldacena, hep-th/9711200.Google Scholar
  2. 2.
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, hep-th/9802109.Google Scholar
  3. 3.
    E. Witten, hep-th/9802150; hep-th/9803131.Google Scholar
  4. 4.
    S. Kachru and E. Silverstein, hep-th/9802183Google Scholar
  5. 5.
    A. Lawrence, N. Nekrasov and C. Vafa, hep-th/9803015.Google Scholar
  6. 6.
    M. Bershadsky, Z. Kakushadze and C. Vafa, hep-th/9803076; M. Bershadsky, A. Johansen, hep-th/9803249.Google Scholar
  7. 7.
    Z. Kakushadze, hep-th/9803214, hep-th/9804184.Google Scholar
  8. 8.
    A. Kehagias, Phys. Lett. B 435 (1998)337, hep-th/9805131.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    J.H. Schwarz, Nucl. Phys. B 226 (1983)269.CrossRefADSGoogle Scholar
  10. 10.
    L. Romans, Phys. Lett. B 153 (1985)392.CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    I. Klebanov and E. Witten, hep-th/9807080.Google Scholar
  12. 12.
    P. Candelas and X. de la Ossa, Nucl. Phys. B 342 (1990)246.CrossRefADSGoogle Scholar
  13. 13.
    C. Ahn, K. Oh and R. Tatar, hep-th/9808143, hep-th/9806041.Google Scholar
  14. 14.
    O. Aharony, A. Fayyazuddin and J. Maldacena, J. High Energy Phys. 07 (1998)013, hep-th/9806159.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    S.S. Gubser and I.R. Klebanov, hep-th/9808075.Google Scholar
  16. 16.
    D.R. Morrison and M.R. Plesser, hep-th/9810201.Google Scholar
  17. 17.
    K. Dasgupta, S. Mukhi, hep-th/9811139.Google Scholar
  18. 18.
    S. Gubser, N. Nekrasov and S. Shatashvili, hep-th/9811230.Google Scholar
  19. 19.
    E. Lopez, hep-th/9812025.Google Scholar
  20. 20.
    S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, Phys. Lett. B 431 (1998)42, hep-th/9803109.CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    J.M. Figueroa-O’Farrill, hep-th/9807149.Google Scholar
  22. 22.
    B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B. Spence, hep-th/9808014.Google Scholar
  23. 23.
    K. Oh and R. Tatar, hep-th/9810244.Google Scholar
  24. 24.
    J.H. Schwarz and P. West, Phys. Lett. B 126 (1983)301CrossRefADSMathSciNetGoogle Scholar
  25. 24a.
    P.S. Howe and P. West, Nucl. Phys. B 238 (1984)181.CrossRefADSMathSciNetGoogle Scholar
  26. 25.
    M.J. Duff and J.X. Lu, Phys. Lett. B 273 (1991)409.CrossRefADSMathSciNetGoogle Scholar
  27. 26.
    G.T. Horowitz and A. Strominger, Nucl. Phys. B 360 (1991)197.CrossRefADSMathSciNetGoogle Scholar
  28. 27.
    Th. Friedrich and I. Kath, J. Differential Geom. 29 (1989)263; Commun. Math. Phys. 133 (1989) 543.zbMATHMathSciNetGoogle Scholar
  29. 28.
    C. Bär, Commun. Math. Phys. 154 (1993) 509.zbMATHCrossRefADSGoogle Scholar
  30. 29.
    C.N. Pope and N.P. Warner, Class. Quantum Grav. 2 (1985)L1.Google Scholar
  31. 30.
    A.L. Besse, “Einstein Manifolds”, Springer-Verlag, 1987.Google Scholar
  32. 31.
    A. Futaki, “Kähler-Einstein Metrics and Integral Invariants”, Springer-Verlag, 1988.Google Scholar
  33. 32.
    Y.T. Siu, Ann. Math. 127 (1988)585.CrossRefMathSciNetGoogle Scholar
  34. 33.
    G. Tian and S.T. Yau, Commun. Math. Phys. 112 (1987)175.zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. 34.
    G. Tian, Invent. Math. 89 (1987)225; 101 (1990)101; 130 (1997)1.zbMATHCrossRefADSMathSciNetGoogle Scholar
  36. 35.
    C. Vafa, Nucl. Phys. B 469 (1996)403.zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. 36.
    A. Fayyazuddin and M. Spaliński, hep-th/9805096.Google Scholar
  38. 37.
    R. Donagi, A. Grassi and E. Witten, Mod. Phys. Lett. A11 (1996), hep-th/9607091.Google Scholar
  39. 38.
    G. Curio and D. Lüst, Int. J. Mod. Phys. A12 (1997)5847, hep-th/9703007.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Alexandros Kehagias
    • 1
  1. 1.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations