Advertisement

The QCD string and generalized wave equation

  • George K. Savvidy
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)

Abstract

Earlier proposed equation for QCD string is reviewed. This equation appears when we examine the gonihedric string model and the corresponding transfer matrix. Arguing that string equation should have a generalized Dirac form we found the corresponding infinite-dimensional gamma matrices as a symmetric solution of the Majorana commutation relations. The generalized gamma matrices are anticommuting and guarantee unitarity of the theory at all orders of v/c. In the second quantized form the equation does not have unwanted ghost states in Fock space. In the absence of Casimir mass terms the spectrum reminds hydrogen exitations. On every mass level r=2, 4, .. there are different charged particles with spin running from j=1/2 up to j max =r−1/2, and the degeneracy is equal to d r =2r−1=2j max . This is in contrast with the exponential degeneracy in superstring theory.

Keywords

Dirac Equation String Tension Gamma Matrice Dual Transformation High Spin Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen, H., Olesen, P. (1970): Phys. Lett. B32, 203ADSGoogle Scholar
  2. 1a.
    Gross, D., Wilczek, F. (1973): Phys. Rev. Lett. 30, 1343CrossRefADSGoogle Scholar
  3. 1b.
    ’t Hooft, G, Nucl. Phys. (1974); (1975): B72, 461; Nucl. Phys. B75, 461ADSMathSciNetGoogle Scholar
  4. 1c.
    Polyakov, A. (1987): Gauge fields and String (Harwood Academic Publishers)Google Scholar
  5. 1d.
    Savvidy, G. (1977): Phys.Lett. B71, 133ADSGoogle Scholar
  6. 1e.
    Gross, G., Taylor, W. (1993): Nucl.Phys. B400 181; B403 (1993) 395CrossRefADSMathSciNetGoogle Scholar
  7. 1f.
    Seiberg, N., Witten, E. (1994): Nucl.Phys. B426 19CrossRefADSMathSciNetGoogle Scholar
  8. 1g.
    Maldacena, J. (1998): Adv. Theor. Math. Phys. 2 231; Phys.Rev.Lett. 80, 4859zbMATHMathSciNetADSGoogle Scholar
  9. 1h.
    Gross, D., H. Ooguri, H. (1998): Aspects of large N gauge theory dynamics as seen by string theory. hep-th/9805129Google Scholar
  10. 1i.
    E. Witten. (1998): J. High Energy Phys. 7, 006; Adv. Theor. Math. Phys. 2, 505–532ADSGoogle Scholar
  11. 2.
    Ed. Schwarz, J. 1985: Superstrings V1, V2 (World Scientific)Google Scholar
  12. 3.
    Green, M., Schwarz, J., Witten, E. (1987): Superstring theory (Cambridge Uni. Press)Google Scholar
  13. 4.
    Savvidy, G., Savvidy, K. (1993): Mod. Phys. Lett. A8, 2963ADSMathSciNetGoogle Scholar
  14. 4a.
    Ambartzumian, R., Savvidy, G., Savvidy, K., Sukiasian, (1992): Phys. Lett. B275, 99ADSMathSciNetGoogle Scholar
  15. 4b.
    Savvidy, G., Savvidy, K. (1993): Int. J. Mod. Phys. A8, 3993ADSMathSciNetGoogle Scholar
  16. 4c.
    Savvidy, G., Schneider, R. (1994): Comm. Math. Phys. 161, 283zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 5.
    Savvidy, G., Savvidy, K. (1998): Gonihedric string equation I. J. High Energy Phys. 4, 8CrossRefADSMathSciNetGoogle Scholar
  18. 6.
    Savvidy, G., (1998): Gonihedric string equation II. Phys. Lett. B; hep-th/9804045Google Scholar
  19. 7.
    Savvidy, G., Wegner, F. (1994): Nucl. Phys. B413, 605CrossRefADSMathSciNetGoogle Scholar
  20. 7a.
    Savvidy, G., Savvidy, K. (1994): Phys.Lett. B324, 72ADSMathSciNetGoogle Scholar
  21. 7b.
    Savvidy, G., Savvidy, K. (1994);(1996): Phys.Lett. B337, 333; Mod. Phys. Lett. A11, 1379ADSMathSciNetGoogle Scholar
  22. 7c.
    Pietig, R., Wegner, F. (1996): Nucl. Phys. B466, 513CrossRefADSMathSciNetGoogle Scholar
  23. 8.
    Dirac, P. A. M. (1928): The Quantum Theory of Electron. Proc. Roy. Soc. A117 610ADSGoogle Scholar
  24. 9.
    Majorana, E. (1932): Nuovo Cimento 9, 335zbMATHCrossRefGoogle Scholar
  25. 10.
    Nambu, Y. (1966): Prog. Theor. Phys. Suppl. (Kyoto) 37–38, 368CrossRefGoogle Scholar
  26. 11.
    Ramond, P. (1971): Dual Theory for Free Fermions. Phys. Rev. D3, 2415ADSMathSciNetGoogle Scholar
  27. 12.
    Pauli, W. (1940): The connection between spin and statistics. Phys. Rev. 58, 716zbMATHCrossRefADSGoogle Scholar
  28. 12a.
    Pauli, W., Weisskopf, V. (1934): Helv. Phys. Acta 7, 709zbMATHGoogle Scholar
  29. 12b.
    Pauli, W. (1936): Ann.Inst.H. Poincare’ 6, 137zbMATHMathSciNetGoogle Scholar
  30. 13.
    Pauli, W. (1936): Ann. Inst. H. Poincare’ 6 109zbMATHMathSciNetGoogle Scholar
  31. 14.
    Dirac, P. A. M. (1936): Proc. Roy. Soc. A155, 447ADSGoogle Scholar
  32. 14a.
    Fierz, M., Pauli, W. (1939): Proc. Roy. Soc. A173, 211ADSMathSciNetGoogle Scholar
  33. 14b.
    Rarita, W., Schwinger, J. (1941): Phys. Rev. 60, 61CrossRefADSzbMATHGoogle Scholar
  34. 14c.
    Gel’fand, I., Naimark, M. (1946): J. Phys. (USSR) 10, 93Google Scholar
  35. 14d.
    Nambu, Y. (1967): Phys. Rev. 160, 1171CrossRefADSGoogle Scholar
  36. 14e.
    Rúhl, W. (1967): Comm. Math. Phys. 6, 312CrossRefADSMathSciNetGoogle Scholar
  37. 14f.
    Sing, L., Hagen, C. (1974): Phys. Rev. D9, 910ADSGoogle Scholar
  38. 14g.
    Fang, J., Fronsdal, C. (1978): Phys. Rev. D18, 3630ADSGoogle Scholar
  39. 15.
    Born, M., Heisenberg, W., Jordan, P. (1926): Z.Physik 35, 557CrossRefADSGoogle Scholar
  40. 15a.
    Weyl, H. (1967): Math.Z. 24, 342Google Scholar
  41. 15b.
    Van der Waerden. (1929): Nachr. Ges. Wiss. Gott. 1, 100Google Scholar
  42. 15c.
    Laporte, O., Uhlenbeck, G. (1931): Phys. Rev. 37, 1380zbMATHCrossRefADSGoogle Scholar
  43. 15d.
    Brauer, R., Weyl, H. (1935): Amer. J. Math. 57, 425zbMATHCrossRefMathSciNetGoogle Scholar
  44. 15e.
    Wigner, E. (1939): Ann. Math. 40, 149CrossRefMathSciNetGoogle Scholar
  45. 16.
    Grodsky, I., Streater, R. (1968): Phys. Rev. Lett. 20, 695zbMATHCrossRefADSGoogle Scholar
  46. 16a.
    Bogoliubov, N., Vladimirov, V. (1958): N.D.V.S. Fiz. Mat. Nauk 3, 26Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • George K. Savvidy
    • 1
  1. 1.National Research Center DemokritosAthensGreece

Personalised recommendations