Holography and the Weyl anomaly

  • Måns Henningson
  • Kostas Skenderis
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)


We review our calculation of the Weyl anomaly for d-dimensional conformal field theories that have a description in terms of a (d+1)-dimensional gravity theory.


Partition Function Gravity Theory Conformal Field Theory Conformal Structure Field Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Maldacena, ‘The large N limit of Superconformal Field Theories and Supergravity’, hep-th/9711200.Google Scholar
  2. 2.
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, ‘Gauge Theory Correlators from Non-Critical String Theory’, hep-th/9802109.Google Scholar
  3. 3.
    E. Witten, ‘Anti-de Sitter space and Holography’, hep-th/9802150.Google Scholar
  4. 4.
    C.R. Graham and J.M. Lee, ‘Einstein Metrics with Prescribed Conformal Infinity on the Ball’, Adv. Math. 87 (1991) 186.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    L. Bonora, P. Pasti and M. Bregola, ‘Weyl Cocycles’, Class. Quant. Grav. 3 (1986) 635.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    S. Deser and A. Schwimmer, ‘Geometric Classification of Conformal Anomalies in Arbitrary Dimensions’, Phys. Lett. B309 (1993) 279, hep-th/9302047.ADSMathSciNetGoogle Scholar
  7. 7.
    M. Henningson and K. Skenderis, ‘The Holographic Weyl Anomaly’, JHEP 07 (1998) 023, hep-th/9806087.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    G.W. Gibbons and S.W. Hawking, ‘Action integrals and partition functions in quantum gravity,’ Phys. Rev. D15 (1977) 2752.ADSMathSciNetGoogle Scholar
  9. 9.
    C. Fefferman and C.R. Graham, ‘Conformal Invariants’, in Elie Cartan et les Mathématiques d’aujourd’hui (Astérisque, 1985) 95.Google Scholar
  10. 10.
    J.D. Brown and M. Henneaux, ‘Central charges in the canonical realization of asymptotic symmetries: An example from three-dimensional gravity’, Commun. Math. Phys. 104 (1986) 207.zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    M.J. Duff, ‘Twenty years of the Weyl anomaly’, Class. Quant. Grav. 11 (1994) 1387, hep-th/9308075 and references therein.zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    S.S. Gubser and I.R. Klebanov, ‘Absorption by Branes and Schwinger Terms in the World Volume Theory’, Phys. Lett. B413 (1997) 41, hep-th/9708005.ADSMathSciNetGoogle Scholar
  13. 13.
    I.R. Klebanov and A.A. Tseytlin, ‘Entropy of Near-Extremal Black p-branes’, Nucl. Phys. B475 (1996) 164, hep-th/9604089.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Måns Henningson
    • 1
  • Kostas Skenderis
    • 2
  1. 1.Institute of Theoretical PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.Spinoza InstituteUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations