Advertisement

Orbifolds of AdS3 and fixpoints of the CFT

  • Klaus Behrndt
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)

Abstract

The 3-d BTZ black hole represents an orbifold of AdS 3 gravity. The UV as well as the IR region of the CFT is governed by a gauged SL(2, R) WZW model. In the UV it corresponds to a light-cone gauging (Liouville model) whereas in the IR it is a space-like gauging (2-d black hole).

Keywords

Black Hole Central Charge Conformal Field Theory Black String Lens Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Maldacena, “The large n limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200.zbMATHMathSciNetADSGoogle Scholar
  2. 2.
    E. Witten, “Anti-de sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253, hep-th/9802150.zbMATHMathSciNetGoogle Scholar
  3. 3.
    S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B428 (1998) 105, hep-th/9802109.ADSMathSciNetGoogle Scholar
  4. 4.
    J. Maldacena, “Talk at Strings98,” www.itp.ucsb.edu/online/strings98/maldacena.Google Scholar
  5. 5.
    M. Banados, C. Teitelboim, and J. Zanelli, “The black hole in three-dimensional space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851, hep-th/9204099.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    S. Aminneborg, I. Bengtsson, D. Brill, S. Holst, and P. Peldan, “Black holes and wormholes in (2+1)-dimensions,” Class. Quant. Grav. 15 (1998) 627, gr-qc/9707036.zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 6a.
    M. Banados, A. Gomberoff, and C. Martinez, “Anti-de sitter space and black holes,” Class. Quant. Grav. 15 (1998) 3575, hep-th/9805087.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 7.
    K. Behrndt, “AdS gravity and field theories at fixpoints,” hep-th/9809015.Google Scholar
  9. 8.
    K. Behrndt, I. Brunner, and I. Gaida, “AdS 3 gravity and conformal field theories,” hep-th/9806195, “Entropy and conformal field theories of AdS 3 models”, Phys. Lett. B432 (1998) 310, hep-th/9804159.Google Scholar
  10. 9.
    M. J. Duff, H. Lu, and C. N. Pope, “AdS 3×S 3 (un)twisted and squashed, and an O(2,2,Z) multiplet of dyonic strings,” hep-th/9807173.Google Scholar
  11. 10.
    J. Maldacena and A. Strominger, “AdS 3 black holes and a stringy exclusion principle,” hep-th/9804085.Google Scholar
  12. 11.
    M. Cvetic and F. Larsen, “Microstates of four-dimensional rotating black holes from near horizon geometry,” hep-th/9805146.Google Scholar
  13. 12.
    A. Achucarro and P. K. Townsend, “A Chern-Simons action for three-dimensional anti-de sitter supergravity theories,” Phys. Lett. B180 (1986) 89.ADSMathSciNetGoogle Scholar
  14. 13.
    E. Witten, “(2+1)-dimensional gravity as an exactly soluble system,” Nucl. Phys. B311 (1988) 46.CrossRefADSMathSciNetGoogle Scholar
  15. 14.
    S. Elitzur, G. Moore, A. Schwimmer, and N. Seiberg, “Remarks on the canonical quantization of the Chern-Simons-Witten theory,” Nucl. Phys. B326 (1989) 108.CrossRefADSMathSciNetGoogle Scholar
  16. 15.
    A. Alekseev and S. Shatashvili, “Path integral quantization of the coadjoint orbits of the Virasoro group and 2-d gravity,” Nucl. Phys. B323 (1989) 719.CrossRefADSMathSciNetGoogle Scholar
  17. 16.
    R. Dijkgraaf, H. Verlinde, and E. Verlinde, “String propagation in a black hole geometry,” Nucl. Phys. B371 (1992) 269–314.CrossRefADSMathSciNetGoogle Scholar
  18. 17.
    E. Witten, “On string theory and black holes,” Phys. Rev. D44 (1991) 314–324.ADSMathSciNetGoogle Scholar
  19. 18.
    C. Schmidhuber and A. A. Tseytlin, “On string cosmology and the RG flow in 2-d field theory,” Nucl. Phys. B426 (1994) 187–202, hep-th/9404180.CrossRefADSMathSciNetGoogle Scholar
  20. 19.
    K. Sfetsos and A. A. Tseytlin, “Antisymmetric tensor coupling and conformal invariance in sigma models corresponding to gauged WZNW theories,” Phys. Rev. D49 (1994) 2933–2956, hep-th/9310159.ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Klaus Behrndt
    • 1
  1. 1.Humboldt-University BerlinBerlinGermany

Personalised recommendations