Strings, matrices and black holes

  • Robbert Dijkgraaf
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)


Five-dimensional black holes in type IIB string theory are discussed from various points of view: classical supergravity solutions, D-branes and Yang-Mills theories, effective conformal field theories, sigma-models on symmetric products, matrix string theory, near-horizon geometries, anti-de-Sitter gravity, and holography. This provides an overview of the modern set of techniques in string theory to address the issues in quantum black holes physics.


Black Hole Gauge Theory Modulus Space Sigma Model Coulomb Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B379 (1996) 99–104, hep-th/9601029.ADSMathSciNetGoogle Scholar
  2. 2.
    A.W. Peet, The Bekenstein formula and string theory (N-brane theory), Class. Quant. Grav. 15 (1998) 3291–3338, hep-th/9712253.zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    J. Polchinski, String Theory, Vol 1 & 2 (Cambridge University Press, 1998).Google Scholar
  4. 4.
    J. Polchinski, Dirichlet-branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724–4727, hep-th/9510017.zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    T. Banks, W. Fischler, S.H. Shenker, and L. Susskind, M Theory as a matrix model: a conjecture, Phys. Rev. D55 (1997) 5112–5128, hep-th/9610043.ADSMathSciNetGoogle Scholar
  6. 6.
    G.’ t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026.Google Scholar
  7. 7.
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377, hep-th/9409089.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351.zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    S. Elitzur, G. Moore, A. Schwimmer, and N. Seiberg, Remarks on the canonical quantization of Chern-Simons-Witten theory, Nucl. Phys. B326 (1989) 108.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    E. Martinec, Conformal field theory, geometry, and entropy, hep-th/9809021.Google Scholar
  11. 11.
    M. R. Douglas, D. Kabat, P. Pouliot, and S. H. Shenker, D-branes and short sistances in string theory, Nucl. Phys. B485 (1997) 85–127, hep-th/9608024.CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Connes, M.R. Douglas, and A. Schwarz, Noncommutative geometry and matrix theory: compactification on tori, JHEP 9802:003 (1998), hep-th/9711162.Google Scholar
  13. 13.
    C. Callan, J. Harvey and A. Strominger, World-sheet approach to heterotic solitons and instantons, Nucl. Phys. 359 (1991) 611.CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    M. Cvetic and D. Youm, General rotating five dimensional black holes of toroidally compactified heterotic string, Nucl.Phys. B476 (1996) 118–132, hep-th/9603100.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    G. Horowitz, J. Maldacena, and A. Strominger, Nonextremal black hole microstates and U-duality, Phys. Lett. B383 (1996) 151–159, hep-th/9603109.ADSMathSciNetGoogle Scholar
  16. 16.
    C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109, hep-th/9410167.CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    E. Cremmer, Supergravities in 5 dimensions, in Superspace and Supergravities, Eds. S.W. Hawking and M. Rocek (Cambridge Univ. Press, 1981) 267.Google Scholar
  18. 18.
    E. Witten, Bound states of strings and p-branes, Nucl. Phys. B460 (1996) 335–350, hep-th/9510135.CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    R. Dijkgraaf, E. Verlinde and H. Verlinde, BPS spectrum of the five-brane and black bole entropy, Nucl. Phys. B486 (1997) 77–88, hep-th/9603126; BPS quantization of the five-brane, Nucl. Phys. B486 (1997) 89–113, hep-th/9604055.CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    N. Seiberg, Matrix description of M-theory on T 5 and T 5/Z 2, Phys. Lett. B408 (1997) 98–104, hep-th/9705221.ADSMathSciNetGoogle Scholar
  21. 21.
    M. Li, Boundary states of D-branes and Dy-strings, Nucl. Phys. B460 (1996) 351, hep-th/9510161.CrossRefADSGoogle Scholar
  22. 22.
    M. Douglas, Branes within branes, hep-th/9512077.Google Scholar
  23. 23.
    M. Green, J. Harvey, and G. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47–52, hep-th/9605033.zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    J.A. Harvey and G. Moore, On the algebra of BPS states, Commun. Math. Phys. 197 (1998) 489–519, hep-th/9609017.zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    M. Berkooz and M. Douglas, Fivebranes in M(atrix) theory, Phys. Rev D55 (1997) 5112–5128, hep-th/9610043.ADSGoogle Scholar
  26. 26.
    E. Witten, On the conformal field theory of the Higgs branch, J. High Energy Phys. 07 (1997) 003, hep-th/9707093.CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    M. Douglas, J. Polchinski, and A. Strominger, Probing five-dimensional black holes with D-branes, JHEP 9712:003 (1997), hep-th/9703031.CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    S. Mukai, On the moduli space of bundles on K3 surfaces I, in M.F. Atiyah et al Eds., Vector Bundles on Algebraic Varieties (Oxford, 1987).Google Scholar
  29. 29.
    D. Huybrechts, Compact hyperkähler manifolds: basic results, alg-geom/9705025.Google Scholar
  30. 30.
    R. Dijkgraaf, Instanton strings and hyperkähler geometry, hep-th/9810210.Google Scholar
  31. 31.
    A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Diff. Geom. 18 (1983) 755–782.zbMATHMathSciNetGoogle Scholar
  32. 32.
    A. Schwimmer and N. Seiberg, Comments on the N=2, N=3, N=4 superconformal algebras in two-dimensions, Phys. Lett. 184B (1987) 191.ADSMathSciNetGoogle Scholar
  33. 33.
    P.S. Landweber Ed., Elliptic Curves and Modular Forms in Algebraic Topology (Springer-Verlag, 1988).Google Scholar
  34. 33a.
    E. Witten, Commun.Math.Phys. 109 (1987) 525.zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. 33b.
    A. Schellekens and N. Warner, Phys. Lett, B177 (1986) 317; Nucl.Phys. B287 (1987) 317.ADSMathSciNetGoogle Scholar
  36. 33c.
    O. Alvarez, T.P. Killingback, M. Mangano, and P. Windey, The Dirac-Ramond operator in string theory and loop space index theorems. Nucl. Phys. B (Proc. Suppl.) 1A (1987) 89; String theory and loop space index theorems, Commun. Math. Phys. 111 (1987) 1.MathSciNetGoogle Scholar
  37. 33d.
    T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang, Superconformal Algebras and String Compactification on Manifolds with SU (N) Holonomy, Nucl.Phys. B315 (1989) 193.CrossRefADSMathSciNetGoogle Scholar
  38. 33e.
    T. Kawai, Y. Yamada and S.-K. Yang, Elliptic Genera and N=2 Superconformal Field Theory, Nucl. Phys. B414 (1994) 191–212.ADSMathSciNetGoogle Scholar
  39. 34.
    M. Eichler and D. Zagier, The Theory of Jacobi Forms (Birkhäuser, 1985).Google Scholar
  40. 35.
    C.D.D. Neumann, The elliptic genus of Calabi-Yau 3-and 4-folds, product formulae and generalized Kac-Moody Algebras, hep-th/9607029.Google Scholar
  41. 36.
    T. Kawai, N=2 Heterotic string threshold correction, K3 surface and generalized Kac-Moody superalgebra, Phys. Lett. B372 (1996) 59–64, hep-th/9512046.ADSMathSciNetGoogle Scholar
  42. 37.
    T. Kawai, K3 surfaces, Igusa cusp form and string theory, hep-th/9710016.Google Scholar
  43. 38.
    L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990) 193–207; Hilbert Schemes of Zero-dimensional Subschemes of Smooth Varieties, Lecture Notes in Mathematics 1572, Springer-Verlag, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  44. 39.
    F. Hirzebruch and T. Höfer, On the Euler Number of an orbifold, Math. Ann. 286 (1990) 255.zbMATHCrossRefMathSciNetGoogle Scholar
  45. 40.
    E. Witten, Mirror manifolds and topological field theory, in Essays on Mirror manifolds, Ed. S-T Yau (International Press, Hong Kong, 1992).Google Scholar
  46. 41.
    C. Vafa and E. Witten, A strong coupling test of S-duality, Nucl. Phys. B431 (1994) 3–77, hep-th/9408074.CrossRefADSMathSciNetGoogle Scholar
  47. 42.
    L. Göttsche and W. Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993) 235–245.zbMATHCrossRefMathSciNetGoogle Scholar
  48. 43.
    J. Cheah, On the cohomology of Hilbert schemes of points, J. Alg. Geom. 5 (1996) 479–511.zbMATHMathSciNetGoogle Scholar
  49. 44.
    R. Dijkgraaf, G. Moore, E. Verlinde, and H. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197–209, hep-th/9608096.zbMATHCrossRefADSMathSciNetGoogle Scholar
  50. 45.
    L. Dixon, J. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B261 (1985) 620; Nucl. Phys. B274 (1986) 285.MathSciNetGoogle Scholar
  51. 46.
    J.M. Maldacena and L. Susskind, D-branes and fat black holes, Nucl. Phys. B475 (1996) 679, hep-th/9604042.CrossRefADSMathSciNetGoogle Scholar
  52. 47.
    R. E. Borcherds, Automorphic forms on O s+2,2 (R) and Infinite Products, Invent. Math. 120 (1995) 161.zbMATHCrossRefADSMathSciNetGoogle Scholar
  53. 48.
    J. Harvey and G. Moore, Algebras, BPS states, and strings, Nucl. Phys. B463 (1996) 315–368, hep-th/9510182.CrossRefADSMathSciNetGoogle Scholar
  54. 49.
    R. Dijkgraaf, E. Verlinde and H. Verlinde, Counting dyons in N=4 string theory, Nucl. Phys. B484 (1997) 543. hep-th/9607026.CrossRefADSMathSciNetGoogle Scholar
  55. 50.
    M. Li and E. Martinec, Matrix black holes, hep-th/9703211.Google Scholar
  56. 51.
    A. Bilal, M(atrix) theory: a pedagogical introduction, hep-th/9710136.Google Scholar
  57. 52.
    T. Banks, Matrix theory, hep-th/9710231.Google Scholar
  58. 53.
    D. Bigatti and L. Susskind, Review of matrix theory, hep-th/9712072.Google Scholar
  59. 54.
    L. Motl, Proposals on non-perturbative superstring interactions, hep-th/9701025.Google Scholar
  60. 55.
    T. Banks and N. Seiberg, Strings from matrices, Nucl. Phys. B497 (1997) 41–55, hep-th/9702187.CrossRefADSMathSciNetGoogle Scholar
  61. 56.
    R. Dijkgraaf, E. Verlinde, and H. Verlinde, Matrix string theory, Nucl. Phys. B500 (1997) 43–61, hep-th/9703030.CrossRefADSMathSciNetGoogle Scholar
  62. 57.
    R. Dijkgraaf, E. Verlinde, and H. Verlinde, Notes on matrix and micro strings, hep-th/9709107.Google Scholar
  63. 58.
    W. Taylor, D-brane field theory on compact spaces, Phys. Lett. B394 (1997) 283–287, hep-th/9611042.ADSGoogle Scholar
  64. 59.
    O.J. Ganor, S. Ramgoolam, and W. Taylor, Branes, fluxes and duality in M(atrix)-theory, Nucl. Phys. B492 (1997) 191–204, hep-th/9611202.CrossRefADSMathSciNetGoogle Scholar
  65. 60.
    T. Banks, N. Seiberg, and S. Shenker, Branes from matrices, hep-th/9612157.Google Scholar
  66. 61.
    J. Maldacena, The large N limit of superconformal field theories and supergravity, hep-th/9711200.Google Scholar
  67. 62.
    S.S. Gubser, I.R. Klebanov, and A.M. Polyakov Gauge theory correlators from noncritical string theory, Phys. Lett. B428 (1998) 105–114, hep-th/9802109.ADSMathSciNetGoogle Scholar
  68. 63.
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253–291, hep-th/9802150.zbMATHMathSciNetGoogle Scholar
  69. 64.
    A. Strominger, Black hole entropy from near-horizon microstates, hep-th/9712251.Google Scholar
  70. 65.
    J. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, hep-th/9804085.Google Scholar
  71. 66.
    E. Martinec, Matrix models of AdS gravity, hep-th/9804111.Google Scholar
  72. 67.
    T. Banks, M.R. Douglas, G.T. Horowitz, and E. Martinec, AdS dynamics from conformal field theory, hep-th/9808016.Google Scholar
  73. 68.
    J.D. Brown, and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207–226zbMATHCrossRefADSMathSciNetGoogle Scholar
  74. 69.
    A. Giveon, D. Kutasov, and N. Seiberg, Comments on string theory on AdS 3, hep-th/9806194.Google Scholar
  75. 70.
    J. de Boer, Six-dimensional supergravity on S 3 ×AdS 3 and 2d conformal field theory, hep-th/9806104; Large N elliptic genus and AdS / CFT correspondence, hep-th/9812240.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Robbert Dijkgraaf
    • 1
  1. 1.Departments of Mathematics and PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations