Interconnections between type II superstrings, M theory and N=4 Yang-Mills

  • Michael B. Green
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 525)


String Theory Modulus Space Modular Form Vertex Operator Supersymmetry Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Witten, String theory dynamics in various dimensions, hep-th/9503124; Nucl. Phys. B443 (1995) 85.Google Scholar
  2. 2.
    P. Aspinwall, Some Relationships Between Dualities in String Theory, in Proceedings of ’s-duality and mirror symmetry’, Trieste 1995, hep-th/9508154; Nucl. Phys. Proc. 46 (1996) 30.Google Scholar
  3. 3.
    J.H. Schwarz, Lectures on Superstring and M-theory dualities, hep-th/9607201; J.H. Schwarz, An SL(2, ℤ) multiplet of type IIb superstrings, hep-th/9508143; Phys. Lett. 360B (1995) 13.Google Scholar
  4. 4.
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven dimensions, Phys. Lett. 76B (1978) 409.ADSGoogle Scholar
  5. 5.
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, hep-th/9410167; Nucl. Phys. B438 (1995) 109; P.K. Townsend, The eleven-dimensional supermembrane revisited, hep-th/9501068; Phys. Lett. B350 (1995) 184.Google Scholar
  6. 6.
    G. Dall’Agata G.K. Lechner, Dmitri Sorokin, Covariant actions for the bosonic sector of d=10 IIB supergravity, hep-th/9707044; Class.Quant.Grav. 14 (1997) L195.Google Scholar
  7. 7.
    G. Dall’Agatai, K. Lechner, M. Tonin, Action for IIB supergravity in 10-dimensions, 2nd Conference on Quantum Aspects of Gauge Theories, Supersymmetry and Unification, Corfu, Greece, 21–26 Sep 1998; hep-th/9812170; D=10, N=IIB supergravity: Lorentz invariant actions and duality, hep-th/9806140; JHEP 9807 (1998).Google Scholar
  8. 8.
    C. Vafa and E. Witten, A one-loop test of string-string duality, hep-th/9505053; Nucl. Phys. B447 (1995) 261.Google Scholar
  9. 9.
    C.G. Callan and J.A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys. B250 (1985) 427.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    M.J. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: a one loop test, hep-th/9506126; Nucl. Phys. 452B (1995)261.Google Scholar
  11. 11.
    M.B. Green and M. Gutperle, Effects of D-instantons, hep-th/9701093; Nucl. Phys. B498 (1997)195.Google Scholar
  12. 12.
    M.B. Green and P. Vanhove, D-instantons, Strings and M-theory, hep-th/9704145; Phys. Lett. B408 (1997) 122.Google Scholar
  13. 13.
    P.S. Howe and P.C. West, The complete N=2, d=10 supergravity, Nucl. Phys. B238 (1984) 181.CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    M.B. Green, M. Gutperle and H. Kwon, Sixteen Fermion and Related Terms in M theory on T 2, hep-th/9710151; Phys. Lett. B421 (1998) 149.Google Scholar
  15. 15.
    M.B. Green and S. Sethi, Supersymmetry constraints on type IIB supergravity, hep-th/9808061.Google Scholar
  16. 16.
    M.B. Green, M. Gutperle and P. Vanhove, One Loop in Eleven-Dimensions, hep-th/9706175; Phys. Lett. 409B (1997) 177.Google Scholar
  17. 17.
    E. Kiritsis and B. Pioline, On R 4 threshold corrections in IIB string theory and (p,q) string instantons, hep-th/9707018; Nucl. Phys. B508 (1997)509.Google Scholar
  18. 18.
    E. Kiritsis and B. Pioline, U-duality and D-brane Combinatorics, hep-th/9710078; Phys. Lett. 418B(1998)61.Google Scholar
  19. 19.
    C. Bachas, C. Fabre, E. Kiritsis, N.A. Obers and P. Vanhove, Heterotic / type I duality and D-brane instantons, hep-th/9707126; Nucl. Phys. B509(1998)33.Google Scholar
  20. 20.
    C. Bachas, Heterotic versus Type I, Talk at Strings′97 (Amsterdam, 1997), hep-th/9710102.Google Scholar
  21. 21.
    E. Kiritsis and N.A. Obers, Heterotic/Type-I Duality in D<10 Dimensions, Threshold Corrections and D-Instantons, hep-th/9709058; JHEP 9710 (1997) 004.Google Scholar
  22. 22.
    J. Russo and A.A. Tseytlin, One-loop four-graviton amplitude in elevendimensional supergravity, hep-th/970713; Nucl. Phys. B508(1997)245.Google Scholar
  23. 23.
    J.G. Russo, An ansatz for a non-perturbative four-graviton amplitude in type IIB superstring theory, hep-th/9707241; Phys. Lett. B417 (1998) 253.Google Scholar
  24. 24.
    A. Kehagias and H. Partouche, D-Instanton Corrections as (p,q)-String Effects and Non-Renormalization Theorems, hep-th/9712164; Int. J. Mod. Phys. A13 (1998) 5075.Google Scholar
  25. 25.
    A. Kehagias and H. Partouche, The exact quartic effective action for the type IIB superstring, hep-th/9710023; Phys. Lett. B422 (1998) 109.Google Scholar
  26. 26.
    N. Berkovits and C. Vafa, Type IIB R 4 H 4g−4 Conjectures, hep-th/9803145; Nucl. Phys. B533 (1998).Google Scholar
  27. 27.
    I. Antoniadis, B. Pioline and T.R. Taylor, Calculable e −1/λ effects, hep-th/9707222; Nucl. Phys. B512(1998)61.Google Scholar
  28. 28.
    N. Berkovits, Construction of R 4 terms in N=2 D=8 superspace, hep-th/9709116; Nucl. Phys. B514 (1998) 191.Google Scholar
  29. 29.
    B. Pioline, A note on non-perturbative R 4 couplings, hep-th/9804023; Phys. Lett. B431 (1998) 73.Google Scholar
  30. 30.
    E. Witten, Bound States of Strings and p-branes, hep-th/9510135; Nucl. Phys. B460 (1996) 335.Google Scholar
  31. 31.
    M.B. Green and M. Gutperle, D-particle bound states and the D-instanton measure, hep-th/9711107; JHEP 9801 (1998) 005.Google Scholar
  32. 32.
    P. Yi, Witten index and threshold bound states of D-branes, hep-th/9704098; Nucl. Phys. B505 (1997) 307.Google Scholar
  33. 33.
    S. Sethi and M. Stern, D-brane bound states redux, hep-th/9705046; Comm. Math. Phys. 194 (1998) 675.Google Scholar
  34. 34.
    J. Maldacena, The large N limit of superconformal field theories and supergravity, hep-th/9711200; Adv. Theor. Math. Phys. 2 (1998) 231.Google Scholar
  35. 35.
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, hep-th/9802109; Phys. Lett.B428 (1998) 105.Google Scholar
  36. 36.
    E. Witten, Anti de Sitter space and holography, hep-th/9802150; Adv. Theor. Math. Phys. 2 (1998) 253.Google Scholar
  37. 37.
    D.I. Olive and C. Montonen, Magnetic monopoles as gauge particles?, Phys. Lett. 72B (1977) 117.Google Scholar
  38. 38.
    A. Sen, Dyon-monopole bound states, selfdual harmonic forms on the multi-monopole moduli space, and SL(2,Z) invariance in string theory, hep-th/9402032Google Scholar
  39. 39.
    N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Multiinstantons and Maldacena’s conjecture, hep-th/9810243.Google Scholar
  40. 40.
    N. Dorey, T.J. Hollowood, V.V. Khoze, M.P. Mattis and S. Vandoren, Yang-Mills instantons in the large N limit and the AdS / CFT correspondence, hep-th/9808157. Phys. Lett. B329 (1994) 217.Google Scholar
  41. 41.
    J. Polchinski, Tasi lectures on D-branes, hep-th/9611050.Google Scholar
  42. 42.
    N. Marcus and J.H. Schwarz, Field theories that have no manifestly Lorentz invariant formulation, Phys. Lett. 115B (1982) 111.ADSMathSciNetGoogle Scholar
  43. 43.
    E. Witten, Five-brane effective action in M theory, hep-th/9610234; J. Geom. Phys. 22 (1997) 103.Google Scholar
  44. 44.
    M.B. Green and J.H. Schwarz, Supersymmetrical string theories, Phys. Lett. 109B (1982) 444.ADSGoogle Scholar
  45. 45.
    M.B. Green and J.H. Schwarz, Supersymmetric dual string theory (III). Loops and renormalization, Nucl. Phys. 198B (1982) 441.CrossRefADSGoogle Scholar
  46. 46.
    D.J. Gross and E. Witten, Superstring modifications of Einstein’s equations, Nucl. Phys. B277 (1986) 1.CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    M.T. Grisaru, A.E.M. Van de Ven and D. Zanon, Two-dimensional supersymmetric sigma models on Ricci flat Kähler manifolds are not finite, Nucl. Phys. B277 (1986) 388; Four loop divergences for the N=1 supersymmetric nonlinear sigma model in two-dimensions, Nucl. Phys. B277 (1986) 409.CrossRefADSGoogle Scholar
  48. 48.
    I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R 4 couplings in M and type II theories on Calabi-Yau spaces, hep-th/9707013; Nucl. Phys. B507 (1997) 571.Google Scholar
  49. 49.
    A. Strominger, Loop corrections to the universal hypermultiplet, hep-th/9706195; Phys. Lett. B421 (1998) 139.Google Scholar
  50. 50.
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, String theory and classical absorption by three-branes, hep-th/9703040.Google Scholar
  51. 51.
    J. Pawelczyk and S. Theisen, AdS 5×S 5 black hole metric at O(α′ 3 ), hep-th/9808126; JHEP 9809 (1998) 010.Google Scholar
  52. 52.
    G.W. Gibbons, M.B. Green and M.V. Perry, Instantons and seven-branes in type IIB superstring theory, Phys. Lett. B370 (1996), 37, hep-th/9511080.ADSMathSciNetGoogle Scholar
  53. 53.
    J. Polchinski, Combinatorics of boundaries in string theory, hep-th/9407031; Phys. Rev. D50 (1994) 6041.Google Scholar
  54. 54.
    M.B. Green A Gas of D instantons, hep-th/9504108; Phys. Lett. B354 (1995) 271.Google Scholar
  55. 55.
    M.B. Green, Pointlike structure and off-shell dual strings, Nucl.Phys. B124 (1977) 461.CrossRefADSGoogle Scholar
  56. 56.
    A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, Springer-Verlag (New York) 1985.zbMATHGoogle Scholar
  57. 57.
    J.H. Schwarz and P.C. West, Symmetries and transformations of chiral N=2 D=10 supergravity, Phys. Lett. 126B (1983) 301.ADSMathSciNetGoogle Scholar
  58. 58.
    J.H. Schwarz, Covariant field equations of chiral N=10, D=10 supergravity, Nucl. Phys. B226 (1983) 269.CrossRefADSGoogle Scholar
  59. 59.
    B.E.W. Nilsson and A. Tollsten, Supersymmetrization of ζ(3)R μνρσ4 in superstring theories, Phys. Lett 181B (1986) 63.ADSGoogle Scholar
  60. 60.
    N. Berkovits and C. Vafa, N=4 Topological Strings, hep-th/9407190, Nucl. Phys.4331995123.Google Scholar
  61. 61.
    H. Ooguri and C. Vafa, All Loop N=2 String Amplitudes, hep-th/9505183; Nucl. Phys. B451 (1995) 121.CrossRefADSMathSciNetGoogle Scholar
  62. 62.
    N.A. Obers and B. Pioline, U duality and M theory, hep-th/9809039; Phys. Rep. (to be published).Google Scholar
  63. 63.
    M.B. Green, Connections between M-theory and superstrings, Talk at Strings’97, hep-th/9712195; Nucl. Phys. B, Proc. Suppl. 68 (1998) 242–251.Google Scholar
  64. 64.
    M.B. Green, M. Gutperle and H. Kwon, (in preparation).Google Scholar
  65. 65.
    M.B. Green and M. Gutperle, D-instanton partition functions, hep-th/9804123; Phys.Rev. D58 (1998) 46007.ADSMathSciNetGoogle Scholar
  66. 66.
    M. Porrati and Rozenberg, Bound states at threshold in supersymmetric quantum mechanics, hep-th/9708119; Nucl. Phys. B515 (1998) 184.CrossRefADSMathSciNetGoogle Scholar
  67. 67.
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large N reduced model as superstring, hep-th/9612115; Nucl. Phys. B498 (1997) 467.CrossRefADSMathSciNetGoogle Scholar
  68. 68.
    V. Periwal, Matrices on a point as the theory of everything, hep-th/9611103; Phys. Rev. D55 (1977) 1711.ADSMathSciNetGoogle Scholar
  69. 69.
    W. Krauth, H. Nicolai and M. Staudacher, Monte Carlo approach to M theory, hep-th/9803117; Phys. Lett. B431 (1998) 31.ADSMathSciNetGoogle Scholar
  70. 70.
    I.K. Kostov and P. Vanhove, Matrix string partition functions, hep-th/9809130; Phys. Lett. B444 (1998) 196.ADSGoogle Scholar
  71. 71.
    M.B. Green and M. Gutperle, Configurations of two D-instantons, hep-th/9612127; Phys. Lett. 398 (1997)69.CrossRefMathSciNetGoogle Scholar
  72. 72.
    G. Moore, N. Nekrasov, S. Shatashvili, D particle bound states and generalized instantons, hep-th/9803265.Google Scholar
  73. 73.
    A. Strominger, Massless black holes and conifolds in string theory, hep-th/9504090; Nucl. Phys. B451 (1995) 96.CrossRefADSMathSciNetGoogle Scholar
  74. 74.
    T. Banks and M.B. Green, Nonperturbative effects in AdS 5×S 5 string theory and d=4 SUSY Yang-Mills, hep-th/9804170; JHEP 9805 (1998) 2.CrossRefADSMathSciNetGoogle Scholar
  75. 75.
    M. Bianchi, M.B. Green, S. Kovacs and G.C. Rossi, Instantons in supersymmetric Yang-Mills and D-instantons in IIB superstring theory, hep-th/9807033; JHEP 9808 (1998) 13.CrossRefADSMathSciNetGoogle Scholar
  76. 76.
    S.S. Gubser, I.R. Klebanov, and A.W. Peet, Entropy and temperature of black 3-branes, hep-th/9602135; Phys. Rev. D54 (1996) 3915.ADSMathSciNetGoogle Scholar
  77. 77.
    O. Aharony and E. Witten, Anti-de Sitter space and the center of the gauge group, hep-th/9807205.Google Scholar
  78. 78.
    S. Ferrara, C. Fronsdal and A. Zaffaroni, On N=8 supergravity in AdS 5 and N=4 superconformal Yang-Mills theory, hep-th/9802203.Google Scholar
  79. 79.
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B72 (1974) 461.ADSMathSciNetGoogle Scholar
  80. 80.
    W. Mück and K.S. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space, I and II, hep-th/9804035 and hep-th/9805145; G. Chalmers, H. Nastase, K. Schalm and R. Siebelink, R-current correlators in N=4 Super Yang-Mills theory from anti-de Sitter supergravity, hep-th/9805105.Google Scholar
  81. 81.
    H.J. Kim, L.J. Romans, and P. van Nieuwenhuizen, Mass spectrum of chiral tendimensional N=2 supergravity on S 2, Phys. Rev. D32 (1985) 389; M. Gunaydin and N. Marcus, The unitarity supermultiplet of N=8 conformal superalgebra involving fields of spin ≤ 2, Class. Quant. Grav. 2 (1985) L11–17.ADSGoogle Scholar
  82. 82.
    P. Howe, K.S. Stelle and P.K. Townsend, Supercurrents, Nucl. Phys. B192 (1981) 332.CrossRefADSGoogle Scholar
  83. 83.
    E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B182 (1981) 173.CrossRefADSGoogle Scholar
  84. 84.
    D.Z. Freedman, S.D. Mathur, A. Matusis, L. Rastelli, Comments on 4 point functions in the CFT / AdS correspondence hep-th/9808006.Google Scholar
  85. 85.
    J. Erdmenger and H. Osborn, Conformally covariant differential operators: Symmetric tensor fields, gr-qc/9708040; Class. Quantum Grav. 15 (1998) 273.zbMATHCrossRefADSMathSciNetGoogle Scholar
  86. 86.
    S.S. Gubser and I.R. Klebanov, Absorption by branes and Schwinger terms in the world volume theory, hep-th/9708005; Phys. Lett. B413 (1997) 41.ADSMathSciNetGoogle Scholar
  87. 87.
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation Functions in the CFT(D)/ADS(D+1) Correspondence, hep-th/9804058.Google Scholar
  88. 88.
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling Constant Dependence in the Thermodynamics of N=4 Supersymmetric Yang-Mills Theory, hep-th/9805156; Nucl. Phys. B534 (1998) 202.CrossRefADSMathSciNetGoogle Scholar
  89. 89.
    R. Kallosh and A. Rajaraman, Vacua of M-theory and string theory, hep-th/9805041; Phys. Rev. D58 (1998) 125003.ADSMathSciNetGoogle Scholar
  90. 90.
    H. Liu and A.A. Tseytlin, D=4 super Yang-Mills, D=5 gauged supergravity, and D=4 conformal supergravity, hep-th/9804083.Google Scholar
  91. 91.
    J.H. Brodie and M. Gutperle, String corrections to four point functions in the AdS / CFT correspondence, hep-th/9809067.Google Scholar
  92. 92.
    M. Henningson and K. Sfetsos, Spinors in the AdS/CFT correspondence, hep-th/9803251; Phys. Lett. B431 (1998) 63.ADSMathSciNetGoogle Scholar
  93. 93.
    A.M. Ghezelbash, K. Kaviani, S. Parvizi and A.H. Fatollahi, Interacting spinors-scalars and AdS/CFT correspondence, hep-th/9805162; Phys. Lett. B435 (1998) 291.ADSMathSciNetGoogle Scholar
  94. 94.
    R.I. Nepomechie, Magnetic monopoles from antisymmetric tensor gauge fields, Phys. Rev. D31 (1985) 1921.ADSMathSciNetGoogle Scholar
  95. 95.
    C. Teitelboim, Gauge invariance for extended objects, Phys. Lett. 167B (1986) 63; Monopoles of higher rank, Phys. Lett. B167 (1986) 69.ADSMathSciNetGoogle Scholar
  96. 96.
    G.’ t Hooft, Dimensional reduction in quantum gravity, Essay dedicated to Abdus Salam. Salamfest 1993:284–296; hep-th/9310026.Google Scholar
  97. 97.
    L. Susskind, The world as a hologram, hep-th/9409089; J. Math. Phys. 36 (1995) 6377.zbMATHCrossRefADSMathSciNetGoogle Scholar
  98. 98.
    C. Bernard, Gauge zero modes, instanton determinants, and QCD calculations, Phys. Rev. D19 (1979) 3013.ADSGoogle Scholar
  99. 99.
    G. ’t Hooft, Computation of quantum effects due to a four dimensional pseudoparticle, Phys. Rev. D14 (1976) 3432; erratumADSGoogle Scholar
  100. 99a.
    ibid. D18 (1978) 2199.ADSGoogle Scholar
  101. 100.
    I.C.G. Campbell and P.C. West, N=2 D=10 Nonchiral supergravity and its spontaneous compactification, Nucl. Phys. B243 (1984)112.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Michael B. Green
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsCambridgeUK

Personalised recommendations