Skip to main content

Experimental realization and control of chemical turing-like patterns

  • Conference paper
  • First Online:
Transport and Structure

Part of the book series: Lecture Notes in Physics ((LNP,volume 532-532))

Abstract

An overview of spatial patterns emerging in a system containing methyleneblue, sulfide and molecular oxygen (MBO-system) in the presence of polyacry-lamide (PA) gel components is presented. In this so-called PA-MBO-System the gel plays an important role in the pattern formation process. In experiments conducted in a spatially twodimensional system we have found several different Turing-type structures such as hexagons, stripes and zig-zag patterns similar to those observed in the well known CIMA reaction. We examined the effect of an externally applied electrical field on the observed structures. The electrical field leads to the formation of striped patterns under conditions which favour the formation of hexagons in the absence of the field. The orientation of the stripes relative to the electrical filed vector depends on the intensity of the field: While a weak electrical field leads to stripes parallel to the field vector, higher field intensities lead to an orientation of the stripes perpendicular to it. In a spatially onedimensional system coexisting domains of stationary and Hopf-modes are formed under the influence of an electrical field. Moreover, we present experiments showing that pattern formation can be controlled by visible light. A selective illumination of the gel-sheet leads to distinct regions of activity which generates stripes instead of hexagons. Using illumination patterns of hexagonal symmetry and tunable wavelength we demonstrate spatial entrainment of the Turing-like patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Meinhard Models of Biological Pattern Formation; Academic Press: London, 1982.

    Google Scholar 

  2. R. J. Field, M. Burger (Eds.) Oscillations and Travelling Waves in Chemical Systems; Wiley-Interscience: New York 1985.

    Google Scholar 

  3. Q. Quyang, H. L. Swinney Chaos 1 411 (1991).

    Article  ADS  Google Scholar 

  4. R. Kapral, K. Showalter (Eds.) Chemical Waves and Patterns; Kluver Academic Publishers: Dordrecht, 1995.

    Google Scholar 

  5. G. Gerisch Naturwissenschaften 58 430 (1971).

    Article  ADS  Google Scholar 

  6. L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, O. Shochet, W. Reynolds Phys. Rev. Lett 75 1859 (1995).

    Article  ADS  Google Scholar 

  7. J. Davidenko, P. Kent, J. Jalife Physica D 49 182 (1991).

    Article  ADS  Google Scholar 

  8. A. Turing Phil. Trans. R. Soc. Lond. 237 B, 37 (1952).

    ADS  Google Scholar 

  9. V. Castets, E. Dulos, J. Boissonade, P. DeKepper Phys. Rev. Lett. 64, 2953 (1990).

    Article  ADS  Google Scholar 

  10. Q. Ouyang, H. L. Swinney Nature 352, 610 (1991).

    Article  ADS  Google Scholar 

  11. I. Prigogine, G. Nicolis J. Chem. Phys. 46 3542 (1967).

    Article  ADS  Google Scholar 

  12. I. Prigogine, R. Lefever J. Chem. Phys. 48 1695 (1968).

    Article  ADS  Google Scholar 

  13. M. Watzl, A.F. Münster Chem. Phys. Lett., 242, 273 (1995).

    Article  ADS  Google Scholar 

  14. K. Kurin-Csörgei, M. Orbán, A.M. Zhabotinsky, I. Epstein Chem. Phys. Lett. 295 70 (1998).

    Article  ADS  Google Scholar 

  15. M. Orbán, K. Kurin-Csörgei, A.M. Zhabotinsky, I. Epstein J. Phys. Chem. B 103 36 (1999).

    Article  Google Scholar 

  16. M. Watzl, A.F. Münster J. Phys. Chem. 102, 2540 (1998).

    Google Scholar 

  17. A.F. Münster, P. Hasal, D. Šnita, M. Marek Phys. Rev. E 50, 546 (1994).

    Article  ADS  Google Scholar 

  18. K. J. Lee, W. D. McCormick, H. L. Swinney, Z. Noszticzius J. Chem. Phys. 96 4048 (1992).

    Article  ADS  Google Scholar 

  19. M. Burger, R. J. Field Nature 307 720 (1984).

    Article  ADS  Google Scholar 

  20. P. Resch, R. J. Field, F. W. Schneider J. Phys. Chem. 93 2783 (1989).

    Article  Google Scholar 

  21. M. Eiswirth, A. F. Münster to be published.

    Google Scholar 

  22. C. A. Parker J. Phys. Chem. 63 26 (1959).

    Article  Google Scholar 

  23. G. Oster, N. Wotherspoon J. Am. Chem. Soc. 70 4836 (1957).

    Article  Google Scholar 

  24. S. Martin, P. Leclere, V. Toal, Y. Lion Opt. Eng. 33 3942 (1994).

    Article  ADS  Google Scholar 

  25. for an explanation of competitive autocatalysis see: M. Eiswirth Suri Kagaku 372 (1994) 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefan C. Müller Jürgen Parisi Walter Zimmermann

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Watzl, M., Fecher, F., Münster, A.F. (1999). Experimental realization and control of chemical turing-like patterns. In: Müller, S.C., Parisi, J., Zimmermann, W. (eds) Transport and Structure. Lecture Notes in Physics, vol 532-532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104235

Download citation

  • DOI: https://doi.org/10.1007/BFb0104235

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66632-5

  • Online ISBN: 978-3-540-48070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics