Skip to main content

Tertiary flow relations for compression and shear components in combined stress tests on ice

  • Ice Physics
  • Conference paper
  • First Online:
Book cover Advances in Cold-Region Thermal Engineering and Sciences

Part of the book series: Lecture Notes in Physics ((LNP,volume 533))

Abstract

The attainment of tertiary flow in ice involves the nonlinear response to the combination of applied stresses and the alteration of both the ice crystals and the polycrystalline aggregate. Tertiary flow rates for individual component strain rates from a series of ice deformation experiments under combined shear and compression stresses are presented, and the departure from the predictions of isotropic flow relations is quantified. A simple generalisation of the flow relations is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Budd W. F., Jacka, T. H., Li Jun, and Warner, R. C. Ice flow relations for individual components in combined shear and compression. in preparation

    Google Scholar 

  2. Glen J. W. (1952) Experiments on the deformation of ice. Journal of Glaciology 2, (12), 111–114

    ADS  Google Scholar 

  3. Glen J. W. (1953) Mechanical properties of ice and their relation to glacier flow. Dissertation. Cambridge, 1953

    Google Scholar 

  4. Glen J. W. (1953) Rate of flow of polycrystalline ice. Nature 172, (4381), 721–722

    Article  ADS  Google Scholar 

  5. Glen J. W. (1955) The creep of polycrystalline ice, Proceedings of the Royal Society, Series A 228, (1175), 519–538

    Article  ADS  Google Scholar 

  6. Steinemann S. (1954) Flow and recrystallisation of ice. IUGG General Assembly of Rome. IAHS Publication 39, 449–462

    Google Scholar 

  7. Steinemann S. (1958) Resultats experimentaux sur la dynamique de la glace et leurs correlations avec le mouvement et la petrographie des glaciers. IUGG/IAHS Symposium of Chamonix. IAHS Publication 47, 184–198

    Google Scholar 

  8. Nye J. F. (1953) The flow of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn bore hole experiment. Proceedings of the Royal Society, Series A. 219, (1139), 477–489

    Article  ADS  Google Scholar 

  9. Glen J. W. (1958) The flow law of ice. IUGG/IAHS Symposium of Chamonix. IAHS Publication 47, 171–183

    Google Scholar 

  10. Mellor M., and Testa, R. (1969) Effect of temperature on the creep of ice. Journal of Glaciology 8, (52), 131–145

    ADS  Google Scholar 

  11. Barnes P., Tabor, D. and Walker, J. C. F. (1971) The friction and creep of polycrystalline ice. Proceedings of the Royal Society, Series A 324, 127–155

    Article  ADS  Google Scholar 

  12. Duval P. (1976) Lois de fluage transitoire ou permanent de la glace polycrystalline pours divers etats de contrainte. Ann. Geophysique 32, 4, 335–360

    MathSciNet  Google Scholar 

  13. Paterson W. S. B., and Budd, W. F., (1982) Flow Parameters for ice sheet modelling. Cold Regions Science and Technology 6, 175–177

    Article  Google Scholar 

  14. Budd W. F. and Jacka, T. H. (1989) A review of ice rheology for ice sheet modelling. Cold Regions Science and Technology 16, (2), 107–144

    Article  Google Scholar 

  15. Cole D. M. (1987) Strain-rate and grain-size effects in ice. Journal of Glaciology 33, (115), 274–280

    ADS  Google Scholar 

  16. Lile R. C. (1978) The effect of anisotropy on the creep of polycrystalline ice. Journal of Glaciology 21, (85), 475–483

    ADS  Google Scholar 

  17. Russell-Head D. S. and Budd, W. F. (1979) Ice sheet flow properties derived from bore-hole shear measurements combined with ice-core studies. Journal of Glaciology 24, (90), 117–130

    ADS  Google Scholar 

  18. Jacka T. H., and Maccagnan, M. (1984) Ice crystallographic and strain rate changes with strain in compression and extension. Cold Regions Science and Technology 8, 269–286

    Article  Google Scholar 

  19. Azuma N., and Higashi, A. (1984) Mechanical properties of Dye 3 Greenland deep ice cores. Annals of Glaciology 4, 1–8

    ADS  Google Scholar 

  20. Lile R. C. (1984) The flow law for isotropic and anisotropic ice at low strain rates. ANARE Reports, Publication No. 132, Australian Antarctic Division, 93p

    Google Scholar 

  21. Dahl-Jensen D. and Gundestrup, N. S. (1987) Constitutive properties of ice at Dye 3, Greenland. Proceedings of the Vancouver Symposium. IAHS Publication No. 170, 31–43.

    Google Scholar 

  22. Li Jun, Jacka, T. H. and Budd, W. F. (1996) Deformation rates in combined compression and shear for ice which is initially isotropic and after the development of strong anisotropy. Annals of Glaciology 23, 247–252.

    ADS  Google Scholar 

  23. Li Jun and Jacka, T. H. (1998) Horizontal shear rate of ice initially exhibiting vertical compression fabrics. Journal of Glaciology, 44, (148), 670–672

    ADS  Google Scholar 

  24. Li Jun and Jacka, T. H. (1996) Isotropic ice flow rates derived from deformation tests in simultaneous shear and compression. IAHR Proceedings of the 13th International Symposium on Ice. Beijing, 27–31 August 1996. 3, 937–947.

    Google Scholar 

  25. Johnson A. F. (1977) Creep characterisation of transversely-isotropic metallic crystals. Jour. Mech. Phys. Solids 25, 117–126.

    Article  MATH  ADS  Google Scholar 

  26. Liboutry L. A. (1987) Very Slow Flows of Solids, Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  27. Liboutry L. A. and Duval P., (1985) Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Annales Geophysicae 3, 207–224.

    Google Scholar 

  28. Azuma N. and Goto-Azuma, K. (1996) An anisotropic flow law for ice-sheet ice and its implications. Annals of Glaciology 23, 202–208.

    ADS  Google Scholar 

  29. Svendsen B. and Hutter, K. (1996) A continuum approach for modelling induced anisotropy in glaciers and ice sheets. Annals of Glaciology 23, 262–269.

    ADS  Google Scholar 

  30. Hutter K. (1983) Theoretical Glaciology: material science of ice and the mechanics of glaciers and ice sheets. Reidel Publishing Co., Dordrecht.

    Google Scholar 

  31. Morland L. W. (1984) Thermomechanical balances of ice sheet flows. Geophys. Astrophys. Fluid Dyn., 29, 237–266

    Article  ADS  MATH  Google Scholar 

  32. Pfitzner M. L. (1980) The Wilkes Ice Cap Project, 1966. ANARE Scientific Reports, Series A (4) Glaciology, Publication No. 127, 133p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kolumban Hutter Yongqi Wang Hans Beer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Warner, R.C., Jacka, T.H., Jun, L., Budd, W.F. (1999). Tertiary flow relations for compression and shear components in combined stress tests on ice. In: Hutter, K., Wang, Y., Beer, H. (eds) Advances in Cold-Region Thermal Engineering and Sciences. Lecture Notes in Physics, vol 533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104188

Download citation

  • DOI: https://doi.org/10.1007/BFb0104188

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66333-1

  • Online ISBN: 978-3-540-48410-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics