Skip to main content

Spontaneous melting of ice in a CaCl2 solution

  • Phase Change Phenomena
  • Conference paper
  • First Online:
Advances in Cold-Region Thermal Engineering and Sciences

Part of the book series: Lecture Notes in Physics ((LNP,volume 533))

  • 172 Accesses

Abstract

This paper is concerned with the melting of a vertical ice plate into a calcium chloride aqueous solution inside a square cavity. The initial temperatures of the ice and the liquid are −5°C and 0°C respectively, and the initial solute (i.e. CaCl2) concentration of the liquid is 20wt% at the beginning of melting. The ice melts spontaneously with decreasing temperature in the melting system. This typical melting behavior is mainly attributed to the combined effects of the driving forces of diffusion of solute(CaCl2)/solvent(H2O), and also heat transfer near the melting front. A complicated double diffusive convection in the liquid layer affects the melting rate of the ice. It is seen that the numerical results, including some assumptions in the melting-front-control volume of the continuum model [15,

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. M. Griffin, Heat, mass, and momentum transfer during the melting of glacial ice in sea water, ASME Journal of Heat Transfer 95, 317–323 (1973).

    Article  Google Scholar 

  2. E. Marschall, Free convection melting on glacial ice in saline water, Lett. Heat Mass Transfer 4, 381–384 (1977).

    Article  Google Scholar 

  3. H. E. Huppert and J. S. Turner, Ice blocks melting into a salinity gradient, J. Fluid Mech. 100 (part2), 367–384 (1980).

    Article  ADS  Google Scholar 

  4. E. G. Josberger and S. Martin, A laboratory and theoretical study of the boundary layer adjacent to a vertical melting ice wall in salt water, J. Fluid Mech. 111, 439–473 (1981).

    Article  ADS  Google Scholar 

  5. V. P. Carey and B. Gebhart, Transport near a vertical ice surface melting in saline water, some numerical calculations, J. Fluid Mech. 117, 379–402 (1982a).

    Article  ADS  Google Scholar 

  6. V. P. Carey and B. Gebhart, Transport near a vertical ice surface melting in saline water, experiments at low salinities, J. Fluid Mech. 117, 403–423 (1982b).

    Article  ADS  Google Scholar 

  7. B. Sammakia and B. Gebhart, Transport near a vertical ice surface melting in water of various salinity levels, Int. J. Heat Mass Transfer 26, 1439–1452 (1983).

    Article  Google Scholar 

  8. R. S. Johnson and J. C. Mollendorf, Transport from a vertical ice surface melting in saline water, Int. J Heat Mass Transfer 27, 1928–1932 (1984).

    Article  Google Scholar 

  9. M. Sugawara, H. Inaba, H. Nishimura and M. Mizuno, Melting of horizontal ice layer from above by combined effect of temperature and concentration of aqua-solvent, Wärme-und Stoffübertragung 21, 227–232 (1987).

    Article  ADS  Google Scholar 

  10. C. Beckermann and R. Viskanta, Double-diffusive convection due to melting, Int. J. Heat Mass Transfer 31, 2077–2089 (1988).

    Article  Google Scholar 

  11. W. Schutz and H. Beer, Melting of ice in pure and saline water inside a square cavity, Chemical Engineering and Processing 31, 311–319, (1992).

    Article  Google Scholar 

  12. S. Fukusako, M. Tago, M. Yamada, K. Kitayama and C. Watanabe, Melting heat transfer from a horizontal ice cylinder immersed in quiescent saline water, ASME Journal of Heat Transfer 114, 34–4 (1992).

    Article  Google Scholar 

  13. M. Sugawara and S. Sasaki, Melting of snow with double effect of temperature and concentration, ASME Journal of Heat Transfer 115, 771–775 (1993).

    Article  Google Scholar 

  14. M. Sugawara and T. Fujita, Melting of an ice layer with double effect of temperature and concentration (2nd report, Development of numerical prediction with flow visualization), Trans. of JSME (Ser. B) 63, 2784–2792 (1997).

    Google Scholar 

  15. W. D. Bennon and F. P. Incropera, A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-I. Model formulation, Int. J. Heat Mass Transfer 30, 2161–2170 (1987).

    Article  MATH  Google Scholar 

  16. W. D. Bennon and F. P. Incropera, A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-II. Application to solidification in a rectangular cavity, Int. J. Heat Mass Transfer 30, 2171–2187 (1987).

    Article  Google Scholar 

  17. Japan Society of Mechanical Engineering, JSME Data Book: Thermo-physical Properties of Fluid (in Japanese), 461–467 (1983).

    Google Scholar 

  18. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Pub. Co, (1980)

    Google Scholar 

  19. E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Transfer, McGraw-Hill Book Company, 718–719 (1972).

    Google Scholar 

  20. Hand Book of Air Conditioning System Design (part 4), McGraw-Hill Book Company, 32–35 (1965).

    Google Scholar 

  21. O. M. Silvares, E. G. Cravalho, W. M. Toscano, and C. E. Huggins, The Thermodynamics of Water Transport From Biological Cells During Freezing, Transactions of the ASME, Series C, 97, 582–588 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kolumban Hutter Yongqi Wang Hans Beer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Sugawara, M., Tago, M. (1999). Spontaneous melting of ice in a CaCl2 solution. In: Hutter, K., Wang, Y., Beer, H. (eds) Advances in Cold-Region Thermal Engineering and Sciences. Lecture Notes in Physics, vol 533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104178

Download citation

  • DOI: https://doi.org/10.1007/BFb0104178

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66333-1

  • Online ISBN: 978-3-540-48410-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics