Skip to main content

Modeling of electrorheological fluids

  • Chapter
  • First Online:
Electrorheological Fluids: Modeling and Mathematical Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1748))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y.H. Pao, Electromagnetic Forces in Deformable Continua, Mechanics Today (S. Nemat-Nasser, ed.), vol. 4, Pergamon Press, 1978, pp. 209–306.

    Google Scholar 

  2. A.C. Eringen and G. Maugin, Electrodynamics of Continua, vol. I and II, Springer, New York, 1989.

    Google Scholar 

  3. I.S. Liu and I. Müller, On the Thermodynamics and Thermostatics of Fluids in Electromagnetic Fields, Arch. Rat. Mech. Anal. 46 (1972), 149–176.

    MathSciNet  MATH  Google Scholar 

  4. K. Hutter and A.A.F. van de Ven, Field Matter Interactions in Thermoelastic Solids, Lecture Notes in Physics, vol. 88, Springer, Berlin, 1978.

    MATH  Google Scholar 

  5. K. Hutter, A Thermodynamic Theory of Fluids and Solids in the Electromagnetic Fields, Arch. Rat. Mech. Anal. 64 (1977), 269–298.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Hutter, On thermodynamics and thermostatics of viscous thermoelastic solids in the electromagnetic fields. A Lagrangian formulation, Arch. Rat. Mech. Anal. 58 (1975), 339–368.

    Article  MathSciNet  MATH  Google Scholar 

  7. G.A. Maugin and A.C. Eringen, On the Equations of the Electrodynamics of Deformable Bodies of Finite Extent, J. Mécanique 16 (1977), 100–147.

    MathSciNet  MATH  Google Scholar 

  8. J.D. Jackson, Klassische Elektrodynamik, Walter de Gruyter, Berlin, 1983.

    Google Scholar 

  9. H. Minkowski, Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern, Göttinger Nach. (1908), 53–111.

    Google Scholar 

  10. J.M. Lévy-Leblond, On the Conceptual Nature of the Physical Constants, Rivista del Nuovo Cimento 7 (1977), 187–214.

    Article  Google Scholar 

  11. M. Le Bellac and J.M. Lévy-Leblond, Galilean Electromagnetism, Il Nuovo Cimento 14 (1973), 217–232.

    Article  Google Scholar 

  12. J. Nečas and M. Šilhavý, Viscous Multipolar Fluids, Quart. Appl. Math. 49 (1991), 247–265.

    MathSciNet  MATH  Google Scholar 

  13. M. Růžička, Mathematical and Physical Theory of Multipolar Viscoelasticity, BMS 233 (1992).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Růžička, M. (2000). Modeling of electrorheological fluids. In: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol 1748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104030

Download citation

  • DOI: https://doi.org/10.1007/BFb0104030

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41385-1

  • Online ISBN: 978-3-540-44427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics