Skip to main content

Nonlinear methods for linear problems

  • Chapter
  • First Online:
Average-Case Analysis of Numerical Problems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1733))

  • 2696 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.1. Notes and References

  • Traub, J. F., Wasilkowski, G. W., and Woźniakowski, H. (1988), Information-based complexity, Academic Press, New York.

    MATH  Google Scholar 

2.6. Notes and References

  • Lee, D., and Wasilkowski, G. W. (1986), Approximation of linear functionals on a Banach space with a Gaussian measure, J. Complexity 2, 12–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, D., and Wasilkowski, G. W. (1986), Approximation of linear functionals on a Banach space with a Gaussian measure, J. Complexity 2, 12–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W. (1986b). Optimal algorithms for linear problems with Gaussian measures, Rocky Mountain J. Math. 16, 727–749.

    Article  MathSciNet  MATH  Google Scholar 

  • Micchelli, C. A. (1984), Orthogonal projections are optimal algorithms, J. Approx. Theory 40, 101–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1984), Can adaption help on the average?, Numer. Math. 44, 169–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1986), Average case optimal algorithms in Hilbert spaces, J. Approx. Theory 47, 17–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Papageorgiou, A., and Wasilkowski, G. W. (1990), On the average complexity of multivariate problems, J. Complexity 6, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Munch, N. J. (1990), Orthogonally invariant measures and best approximation of linear operators, J. Approx. Theory 61, 158–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Mathé, P. (1990), s-numbers in information-based complexity, J. Complexity 6, 41–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, D., and Wasilkowski, G. W. (1986), Approximation of linear functionals on a Banach space with a Gaussian measure, J. Complexity 2, 12–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W. (1986b). Optimal algorithms for linear problems with Gaussian measures, Rocky Mountain J. Math. 16, 727–749.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1984), Can adaption help on the average?, Numer. Math. 44, 169–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1984), Can adaption help on the average?, Numer. Math. 44, 169–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Munch, N. J. (1990), Orthogonally invariant measures and best approximation of linear operators, J. Approx. Theory 61, 158–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W. (1986a), Information of varying cardinality, J. Complexity 2, 204–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W. (1989), On adaptive information with varying cardinality for linear problems with elliptically contoured measures, J. Complexity 5, 363–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Plaskota, L. (1993), A note on varying cardinality in the average case setting, J. Complexity 9, 458–470.

    Article  MathSciNet  MATH  Google Scholar 

  • Paskov, S. H. (1995), Termination criteria for linear problems, J. Complexity 11, 105–137.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, F. (1993), On the role of computable error estimates in the analysis of numerical approximation algorithms, in: Proceedings of the Smalefest, M. W. Hirsch, J. E. Marsden, and M. Shub, eds., pp. 387–394, Springer-Verlag, New York.

    Google Scholar 

  • Lee, D., and Wasilkowski, G. W. (1986), Approximation of linear functionals on a Banach space with a Gaussian measure, J. Complexity 2, 12–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W. (1986b). Optimal algorithms for linear problems with Gaussian measures, Rocky Mountain J. Math. 16, 727–749.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1987), Average complexity for linear operators over bounded domains, J. Complexity 3, 57–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Heinrich, S. (1990a), Probabilistic complexity analysis for linear problems on bounded domains, J. Complexity 6, 231–255.

    Article  MathSciNet  MATH  Google Scholar 

  • Kon, M. A. (1994), On the δ → 0 limit in probabilistic complexity, J. Complexity 10, 356–365.

    Article  MathSciNet  MATH  Google Scholar 

  • Kon, M. A., Ritter, K., and Werschulz, A. G. (1991), On the average case solvability of ill-posed problems, J. Complexity 7, 220–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Kon, M. A., Ritter, K., and Werschulz, A. G. (1991), On the average case solvability of ill-posed problems, J. Complexity 7, 220–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Vakhania, N. N. (1991), Gaussian mean boundedness of densely defined linear operators, J. Complexity 7, 225–231.

    Article  MathSciNet  MATH  Google Scholar 

  • Traub, J. F., Wasilkowski, G. W., and Woźniakowski, H. (1988), Information-based complexity, Academic Press, New York.

    MATH  Google Scholar 

  • Traub, J. F., and Woźniakowski, H. (1980), A general theory of optimal algorithms, Academic Press, New York.

    MATH  Google Scholar 

  • Micchelli, C. A., and Rivlin, T. J. (1985), Lectures on optimal recovery, in: Numerical analysis Lancaster 1984, P. R. Turner, ed., pp. 21–93, Lect. Notes in Math. 1129, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Novak, E. (1988), Deterministic and stochastic error bounds in numerical analysis, Lect. Notes in Math. 1349, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Novak, E. (1996a), On the power of adaption, J. Complexity 12, 199–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Traub, J. F., Wasilkowski, G. W., and Woźniakowski, H. (1988), Information-based complexity, Academic Press, New York.

    MATH  Google Scholar 

  • Gal, S., and Micchelli, C. (1980), Optimal sequential and non-sequential procedures for evaluating a functional, Appl. Anal. 10, 105–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Traub, J. F., and Woźniakowski, H. (1980), A general theory of optimal algorithms, Academic Press, New York.

    MATH  Google Scholar 

  • Bakhvalov, N. S. (1971), On the optimality of linear methods for operator approximation in convex classes of functions, USSR Comput. Math. Math. Phys. 11, 244–249.

    Article  MATH  Google Scholar 

  • Korneichuk, N. P. (1994), Optimization of active algorithms for recovery of monotonic functions from Hölder's class, J. Complexity 10, 265–269.

    Article  MathSciNet  MATH  Google Scholar 

  • Novak, E. (1995a), Optimal recovery and n-widths for convex classes of functions, J. Approx. Theory 80, 390–408.

    Article  MathSciNet  MATH  Google Scholar 

  • Novak, E. (1995b), The adaption problem for nonsymmetric convex sets, J. Approx. Theory 82, 123–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Plaskota, L. (1996), Noisy information and computational complexity, Cambridge Univ. Press, Cambridge.

    Book  MATH  Google Scholar 

  • Maiorov, V. E. (1992), Widths of spaces endowed with a Gaussian measure, Russian Acad. Sci. Dokl. Math. 45, 305–309.

    MathSciNet  Google Scholar 

  • Maiorov, V. E. (1993), Average n-widths of the Wiener space in the L -norm, J. Complexity 9, 222–230.

    Article  MathSciNet  MATH  Google Scholar 

  • Maiorov, V. E. (1996b), Widths and distributions of values of the approximation functional on the Sobolev space with measure, Constr. Approx. 12, 443–462.

    Article  MathSciNet  MATH  Google Scholar 

  • Micchelli, C. A. (1984), Orthogonal projections are optimal algorithms, J. Approx. Theory 40, 101–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Mathé, P. (1990), s-numbers in information-based complexity, J. Complexity 6, 41–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, Yong-Sheng (1992), Average n-width of point set in Hilbert space, Chinese Sci. Bull. 37, 1153–1157.

    MathSciNet  MATH  Google Scholar 

  • Maiorov, V. E. (1994), Linear widths of function spaces equipped with the Gaussian measure, J. Approx. Theory 77, 74–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Maiorov, V. E. (1996a), About widths of Wiener space in L q -norm, J. Complexity 12, 47–57.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, Yong-Sheng, and Wang, Chengyong (1995), Average error bounds of best approximation of continuous functions on the Wiener space, J. Complexity 11, 74–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Maiorov, V. E., and Wasilkowski, G. W. (1996), Probabilistic and average linear widths in L q -norm with respect to r-fold Wiener measure, J. Approx. Theory 84, 31–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Magaril-Ilyaev, G. G. (1994), Average widths of Sobolev classes on ℝn, J. Approx. Theory 76, 65–76.

    Article  MathSciNet  Google Scholar 

3.1. Notes and References

  • Müller-Gronbach, T., and Ritter, K. (1998), Spatial adaption for predicting random functions, Ann. Statist. 26, 2264–2288.

    Article  MathSciNet  MATH  Google Scholar 

  • Istas, J. (1996), Estimating the singularity functions of a Gaussian process with applications, Scand. J. Statist. 23, 581–595.

    MathSciNet  MATH  Google Scholar 

  • Istas, J., and Lang, G. (1994), Variations quadratiques et estimation de l'exposant de Hölder local d'un processus gaussien, C. R. Acad. Sci. 319, 201–206.

    MathSciNet  Google Scholar 

  • Benassi, A., Cohen, S., Istas, J., and Jaffard, S. (1998), Identification of filtered white noise, Stochastic Processes Appl. 75, 31–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Benassi, A., Cohen, S., and Istas, J. (1998), Identifying the multifractional function of a Gaussian process, Stat. Prob. Letters 39, 337–345.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, F., and Wasilkowski, G. W. (1993), On detecting regularity of functions: a probabilistic analysis, J. Complexity 9, 373–386.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W., and Gao, F. (1992), On the power of adaptive information for functions with singularities, Math. Comp. 58, 285–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1986), Information-based complexity, Ann. Rev. Comput. Sci. 1, 319–380.

    Article  MathSciNet  MATH  Google Scholar 

4.1. Notes and References

Download references

Authors

Editor information

Klaus Ritter

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Ritter, K. (2000). Nonlinear methods for linear problems. In: Ritter, K. (eds) Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics, vol 1733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103941

Download citation

  • DOI: https://doi.org/10.1007/BFb0103941

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67449-8

  • Online ISBN: 978-3-540-45592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics