Skip to main content

Integration and approximation of multivariate functions

  • Chapter
  • First Online:
  • 2730 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1733))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.8. Notes and References

  • Ylvisaker, D. (1975), Designs on random fields, in: A survey of statistical design and linear models, J. Srivastava, ed., pp. 593–607, North-Holland, Amsterdam.

    Google Scholar 

  • Wittwer, Gisela (1978), Über asymptotisch optimale Versuchsplanung im Sinne von Sacks-Ylvisaker, Math. Operationsforsch. u. Statist. 9, 61–71.

    MathSciNet  MATH  Google Scholar 

  • Micchelli, C. A., and Wahba, G. (1981), Design problems for optimal surface interpolation, in: Approximation theory and applications, Z. Ziegler, ed., pp. 329–347, Academic Press, New York.

    Google Scholar 

  • Papageorgiou, A., and Wasilkowski, G. W. (1990), On the average complexity of multivariate problems, J. Complexity 6, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1991), Average case complexity of multivariate integration, Bull. Amer. Math. Soc. (N. S.) 24, 185–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Aronszajn, N. (1950), Theory of reproducing kernels, Trans. Amer. Math. Soc. 68, 337–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Delvos, F.-J., and Schempp, W. (1989), Boolean methods in interpolation and approximation, Pitman Research Notes in Mathematics Series 230, Longman, Essex.

    MATH  Google Scholar 

  • Smolyak, S. A. (1963), Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Math. Dokl. 4, 240–243.

    MATH  Google Scholar 

  • Novak, E., Ritter, K., and Woźniakowski, H. (1995), Average case optimality of a hybrid secant-bisection method, Math. Comp. 64, 1517–1539.

    Article  MathSciNet  MATH  Google Scholar 

  • Gordon, W. J. (1971), Blending function methods of bivariate and multivariate interpolation and approximation, SIAM J. Numer. Anal. 8, 158–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Wahba, G. (1978b), Interpolating surfaces: high order convergence rates and their associated designs, with applications to X-ray image reconstruction, Tech. Rep. No. 523, Dept. of Statistics, Univ. of Wisconsin, Madison.

    Google Scholar 

  • Delvos, F.-J., and Schempp, W. (1989), Boolean methods in interpolation and approximation, Pitman Research Notes in Mathematics Series 230, Longman, Essex.

    MATH  Google Scholar 

  • Delvos, F.-J. (1990), Boolean methods for double integration, Math. Comp. 55, 683–692.

    Article  MathSciNet  MATH  Google Scholar 

  • Ritter, K. (1996a), Asymptotic optimality of regular sequence designs, Ann. Statist. 24, 2081–2096.

    Article  MathSciNet  MATH  Google Scholar 

  • Novak, E., and Ritter, K. (1999), Simple cubature formulas with high polynomial exactness, Constr. Approx. 15, 499–522.

    Article  MathSciNet  MATH  Google Scholar 

  • Genz, A. C. (1986), Fully symmetric interpolatory rules for multiple integrals, SIAM J. Numer. Anal. 23, 1273–1283.

    Article  MathSciNet  MATH  Google Scholar 

  • Pereverzev, S. V. (1986), On optimization of approximate methods of solving integral equations, Soviet Math. Dokl. 33, 347–351.

    MATH  Google Scholar 

  • Pereverzev, S. V. (1996), Optimization of methods for approximate solution of operator equations, Nova Science, New York.

    MATH  Google Scholar 

  • Zenger, Ch. (1991), Sparse grids, in: Parallel algorithms for partial differential equations, W. Hackbusch, ed., pp. 241–251. Vieweg, Braunschweig.

    Google Scholar 

  • Griebel, M., Schneider, M., and Zenger, Ch. (1992), A combination technique for the solution of sparse grid problems, in: Iterative methods in linear algebra, R. Beauwens and P. de Groen, eds., pp. 263–281, Elsevier, North-Holland.

    Google Scholar 

  • Werschulz, A. G. (1996), The complexity of the Poisson problem for spaces of bounded mixed derivatives, in: The mathematics of numerical analysis, J. Renegar, M. Shub, S. Smale, eds., pp. 895–914, Lect. in Appl. Math. 32, AMS, Providence.

    Google Scholar 

  • Bungartz, H.-J., and Griebel, M. (1999), A note on the complexity of solving Poisson's equation for spaces of bounded mixed derivatives, J. Complexity 15, 167–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Ritter, K. (1996b), Almost optimal differentiation using noisy data, J. Approx. Theory bf 86, 293–309.

    Article  MathSciNet  MATH  Google Scholar 

  • Temlyakov, V. N. (1994), Approximation of periodic functions, Nova Science, New York.

    MATH  Google Scholar 

  • Novak, E., Ritter, K., and Steinbauer, A. (1998), A multiscale method for the evaluation of Wiener integrals, in: Approximation Theory IX, Vol. 2, C. K. Chui and L. L. Schumaker, eds., pp. 251–258, Vanderbilt Univ. Press, Nashville.

    Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1999), Weighted tensor product algorithms for linear multivariate problems, J. Complexity 15, 402–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Steinbauer, A. (1999), Quadrature formulas for the Wiener measure, J. Complexity 15, 476–498.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1999), Weighted tensor product algorithms for linear multivariate problems, J. Complexity 15, 402–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Novak, E., and Ritter, K. (1993), Some complexity results for zero finding for univariate functions, J. Complexity 9, 15–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Papageorgiou, A., and Wasilkowski, G. W. (1990), On the average complexity of multivariate problems, J. Complexity 6, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Novak, E., Ritter, K., and Woźniakowski, H. (1995), Average case optimality of a hybrid secant-bisection method, Math. Comp. 64, 1517–1539.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1991), Average case complexity of multivariate integration, Bull. Amer. Math. Soc. (N. S.) 24, 185–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Papageorgiou, A., and Wasilkowski, G. W. (1990), On the average complexity of multivariate problems, J. Complexity 6, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1992), Average case complexity of linear multivariate problems, Part 1: Theory, Part 2: Applications, J. Complexity 8, 337–372, 373–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1991), Average case complexity of multivariate integration, Bull. Amer. Math. Soc. (N. S.) 24, 185–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Roth, K. (1954), On irregularities of distribution, Mathematika 1, 73–79.

    Article  MathSciNet  MATH  Google Scholar 

  • Roth, K. (1980), On irregularities of distribution, IV, Acta Arith. 37, 67–75.

    MathSciNet  MATH  Google Scholar 

  • Frank, K., and Heinrich, S. (1996), Computing discrepancies of Smolyak quadrature rules, J. Complexity 12, 287–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H. (1992), Random number generation and quasi-Monte Carlo methods, CBSM-NSF Regional Conf. Ser. Appl. Math. 63, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  • Drmota, M., and Tichy, R. F. (1997), Sequences, discrepancies, and applications, Lect. Notes in Math. 1651, Springer-Verlag, Berlin.

    MATH  Google Scholar 

3.1. Notes and References

  • Bellman, R. (1961), Adaptive Control Processes: a Guided Tour, Princeton University, Princeton.

    Book  MATH  Google Scholar 

  • Woźniakowski, H. (1992), Average case complexity of linear multivariate problems, Part 1: Theory, Part 2: Applications, J. Complexity 8, 337–372, 373–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1994a), Tractability and strong tractability of linear multivariate problems, J. Complexity 10, 96–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1992), Average case complexity of linear multivariate problems, Part 1: Theory, Part 2: Applications, J. Complexity 8, 337–372, 373–392.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1994a), Tractability and strong tractability of linear multivariate problems, J. Complexity 10, 96–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Woźniakowski, H. (1994b), Tractability and strong tractability of multivariate tensor product problems, J. Computing Inform. 4, 1–19.

    MATH  Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1995), Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complexity 11, 1–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1997), The exponent of discrepancy is at most 1.4778, Math. Comp. 66, 1125–1132.

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan, I. H., and Woźniakowski, H. (1998), When are quasi-Monte Carlo algorithms efficient for high dimensional integrals, J. Complexity 14, 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1999), Weighted tensor product algorithms for linear multivariate problems, J. Complexity 15, 402–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1999), Weighted tensor product algorithms for linear multivariate problems, J. Complexity 15, 402–447.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Klaus Ritter

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Ritter, K. (2000). Integration and approximation of multivariate functions. In: Ritter, K. (eds) Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics, vol 1733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103940

Download citation

  • DOI: https://doi.org/10.1007/BFb0103940

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67449-8

  • Online ISBN: 978-3-540-45592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics