Skip to main content

Second-order results for linear problems

  • Chapter
  • First Online:
Average-Case Analysis of Numerical Problems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1733))

  • 2722 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.5. Notes and References

  • Aronszajn, N. (1950), Theory of reproducing kernels, Trans. Amer. Math. Soc. 68, 337–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Parzen, E. (1959), Statistical inference on time series by Hilbert space methods, I, in: Time series analysis papers, E. Parzen, ed., pp. 251–382, Holden-Day, San Francisco, 1967.

    Google Scholar 

  • Vakhania, N. N., Tarieladze, V. I., and Chobanyan, S. A. (1987), Probability distributions on Banach spaces, Reidel, Dordrecht.

    Book  Google Scholar 

  • Wahba, G. (1990), Spline models for observational data, CBSM-NSF Regional Conf. Ser. Appl. Math. 59, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  • Atteia, M. (1992), Hilbertian kernels and spline functions, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Loève, M. (1948), Fonctions aléatoires du second ordre, supplement to: Processus stochastiques et mouvement Brownien, Lévy, P., pp. 299–353, Gauthier-Villars, Paris.

    Google Scholar 

  • Hájek, J. (1962), On linear statistical problems in stochastic processes, Czech. Math. J. 12, 404–440.

    MathSciNet  MATH  Google Scholar 

3.6. Notes and References

  • Atteia, M. (1992), Hilbertian kernels and spline functions, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Kimeldorf, G. S., and Wahba, G. (1970a), A correspondence between Bayesian estimation on stochastic processes and smoothing by splines, Ann. Math. Statist. 41, 495–502.

    Article  MathSciNet  MATH  Google Scholar 

  • Kimeldorf, G. S., and Wahba, G. (1970b), Spline functions and stochastic processes, Sankhyā Ser. A 32, 173–180.

    MathSciNet  MATH  Google Scholar 

  • Micchelli, C. A., and Rivlin, T. J. (1985), Lectures on optimal recovery, in: Numerical analysis Lancaster 1984, P. R. Turner, ed., pp. 21–93, Lect. Notes in Math. 1129, Springer-Verlag, Berlin.

    Google Scholar 

  • Wasilkowski, G. W., and Woźniakowski, H. (1986), Average case optimal algorithms in Hilbert spaces, J. Approx. Theory 47, 17–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Wahba, G. (1990), Spline models for observational data, CBSM-NSF Regional Conf. Ser. Appl. Math. 59, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  • Mardia, K. V., Kent, J. T., Goodall, C. R., and Little, J. A. (1996), Kriging and splines with derivative information, Biometrika 83, 207–221.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, D., and Wasilkowski, G. W. (1986), Approximation of linear functionals on a Banach space with a Gaussian measure, J. Complexity 2, 12–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Traub, J. F., Wasilkowski, G. W., and Woźniakowski, H. (1988), Information-based complexity, Academic Press, New York.

    MATH  Google Scholar 

  • Kimeldorf, G. S., and Wahba, G. (1970a), A correspondence between Bayesian estimation on stochastic processes and smoothing by splines, Ann. Math. Statist. 41, 495–502.

    Article  MathSciNet  MATH  Google Scholar 

  • Eubank, R. L. (1988), Spline smoothing and nonparametric regression, Dekker, New York.

    MATH  Google Scholar 

  • Wahba, G. (1990), Spline models for observational data, CBSM-NSF Regional Conf. Ser. Appl. Math. 59, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  • Plaskota, L. (1996), Noisy information and computational complexity, Cambridge Univ. Press, Cambridge.

    Book  MATH  Google Scholar 

  • Zhensykbaev, A. A. (1983), Extremality of monosplines of minimal deficiency, Math. USSR Izvestiya 21, 461–482.

    Article  MATH  Google Scholar 

  • Micchelli, C. A., and Rivlin, T. J. (1985), Lectures on optimal recovery, in: Numerical analysis Lancaster 1984, P. R. Turner, ed., pp. 21–93, Lect. Notes in Math. 1129, Springer-Verlag, Berlin.

    Google Scholar 

  • Traub, J. F., Wasilkowski, G. W., and Woźniakowski, H. (1988), Information-based complexity, Academic Press, New York.

    MATH  Google Scholar 

  • Korneichuk, N. P. (1991), Exact constants in approximation theory, Cambridge Univ. Press, Cambridge.

    Book  Google Scholar 

  • Bojanov, B. D., Hakopian, H. A., and Sahakian, A. A. (1993), Spline functions and multivariate interpolations, Kluwer, Dordrecht.

    Book  MATH  Google Scholar 

  • Sacks, J., and Ylvisaker, D. (1966), Designs for regression with correlated errors, Ann. Math. Statist. 37, 68–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Sacks, J., and Ylvisaker, D. (1970b), Statistical design and integral approximation, in: Proc. 12th Bienn. Semin. Can. Math. Congr., R. Pyke, ed., pp. 115–136, Can. Math. Soc., Montreal.

    Google Scholar 

  • Eubank, R. L., Smith, P. L., and Smith, P. W. (1981), Uniqueness and eventual uniqueness of optimal designs in some time series models, Ann. Statist. 9, 486–493.

    Article  MathSciNet  MATH  Google Scholar 

  • Eubank, R. L., Smith, P. L., and Smith, P. W. (1982), A note on optimal and asymptotically optimal designs for certain time series models, Ann. Statist. 10, 1295–1301.

    Article  MathSciNet  MATH  Google Scholar 

  • Müller-Gronbach, T. (1996), Optimal designs for approximating the path of a stochastic process, J. Statist. Planning Inf. 49, 371–385.

    Article  MathSciNet  MATH  Google Scholar 

4.4. Notes and References

  • Christensen, R. (1987), Plane answers to complex questions, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Christensen, R. (1991), Linear models for multivariate, time series, and spatial data, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Cressie, N. A. C. (1993), Statistics for spatial data, Wiley, New York.

    MATH  Google Scholar 

  • Christensen, R. (1991), Linear models for multivariate, time series, and spatial data, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Hjort, N. L., and Omre, H. (1994), Topics in spatial statistics, Scand. J. Statist. 21, 289–357.

    MathSciNet  MATH  Google Scholar 

  • Sacks, J., and Ylvisaker, D. (1970b), Statistical design and integral approximation, in: Proc. 12th Bienn. Semin. Can. Math. Congr., R. Pyke, ed., pp. 115–136, Can. Math. Soc., Montreal.

    Google Scholar 

  • Cambanis, S. (1985), Sampling designs for time series, in: Time series in the time domain, Handbook of Statistics, Vol. 5, E. J. Hannan, P. R. Krishnaiah, and M. M. Rao, eds., pp. 337–362, North-Holland, Amsterdam.

    Google Scholar 

  • Näther, W. (1985), Effective observation of random fields, Teubner Verlagsgesellschaft, Leipzig.

    MATH  Google Scholar 

  • Pilz, J. (1983), Bayesian estimation and experimental design in linear regression models, Teubner Verlagsgesellschaft, Leipzig.

    MATH  Google Scholar 

  • O'Hagan, A. (1992), Some Bayesian numerical analysis, in: Bayesian statistics 4, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds., pp. 345–363, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Cambanis, S., and Masry, E. (1983), Sampling designs for the detection of signals in noise, IEEE Trans. Inform. Theory IT-29, 83–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Cambanis, S. (1985), Sampling designs for time series, in: Time series in the time domain, Handbook of Statistics, Vol. 5, E. J. Hannan, P. R. Krishnaiah, and M. M. Rao, eds., pp. 337–362, North-Holland, Amsterdam.

    Google Scholar 

  • Fedorov, V. V. (1972), Theory of optimal experiments, Academic Press, New York.

    Google Scholar 

  • Pukelsheim, F. (1993), Optimal design of experiments, Wiley, New York.

    MATH  Google Scholar 

Download references

Authors

Editor information

Klaus Ritter

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Ritter, K. (2000). Second-order results for linear problems. In: Ritter, K. (eds) Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics, vol 1733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103937

Download citation

  • DOI: https://doi.org/10.1007/BFb0103937

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67449-8

  • Online ISBN: 978-3-540-45592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics