Skip to main content

Fast sets and points for fractional Brownian motion

  • Exposés
  • Chapter
  • First Online:
Séminaire de Probabilités XXXIV

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1729))

Abstract

In their classic paper, S. Orey and S.J. Taylor compute the Hausdorff dimension of the set of points at which the law of the iterated logarithm fails for Brownian motion. By introducing “fast sets”, we describe a converse to this problem for fractional Brownian motion. Our result is in the form of a limit theorem. From this, we can deduce refinements to the aforementioned dimension result of Orey and Taylor as well as the work of R. Kaufman. This is achieved via establishing relations between stochastic co-dimension of a set and its Hausdorff dimension along the lines suggested by a theorem of S.J. Taylor.

Research supported by a grant from the National Security Agency

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.T. Barlow and E. Perkins (1984). Levels at which every Brownian excursion is exceptional. Sém. Prob. XVIII, Lecture Notes in Math. 1059, 1–28, Springer-Verlag, New York.

    Google Scholar 

  2. M. Csörgő and P. Révész (1981). Strong Approximations in Probability and Statistics, Academic Press, New York.

    MATH  Google Scholar 

  3. P. Deheuvels and M.A. Lifshits (1997). On the Hausdorff dimension of the set generated by exceptional oscillations of a Wiener process. Studia Sci. Math. Hung., 33, 75–110.

    MathSciNet  MATH  Google Scholar 

  4. P. Deheuvels and D.M. Mason (1997). Random fractal functional laws of the iterated logarithm. (preprint)

    Google Scholar 

  5. R.M. Dudley (1984). A Course on Empirical Processes. École d'Été de St. Flour 1982. Lecture Notes in Mathematics 1097. Springer, Berlin.

    Chapter  Google Scholar 

  6. J. Hawkes (1971). On the Hausdorff dimension of the range of a stable process with a Borel set. Z. Wahr. verw. Geb., 19, 90–102.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Hawkes (1981). Trees generated by a simple branching process. J. London Math. Soc., 24, 373–384.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.-P. Kahane (1985). Some Random Series of Functions, second edition. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  9. R. Kaufman (1974). Large increments of Brownian Motion. Nagoya Math. J., 56, 139–145.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Khoshnevisan, Y. Peres and Y. Xiao (1998). Limsup random fractals. In preparation.

    Google Scholar 

  11. N. Kôno (1977). The exact Hausdorff measure of irregularity points for a Brownian path. Z. Wahr. verw. Geb., 40, 257–282.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Ledoux and M. Talagrand (1991). Probability in Banach Space, Isoperimetry and Processes, Springer-Verlag, Heidelberg-New York.

    Book  MATH  Google Scholar 

  13. P. Lévy (1937). Théorie de l'Addition des Variables Aléatoires. Gauthier-Villars, Paris.

    MATH  Google Scholar 

  14. R. Lyons (1980). Random walks and percolation on trees. Ann. Prob., 18, 931–958.

    Article  MathSciNet  MATH  Google Scholar 

  15. M.B. Marcus (1968). Hölder conditions for Gaussian processes with stationary increments. Trans. Amer. Math. Soc., 134, 29–52.

    MathSciNet  MATH  Google Scholar 

  16. M.B. Marcus and J. Rosen (1992). Moduli of continuity of local times of strongly symmetric Markov processes via Gaussian processes. J. Theoretical Prob., 5, 791–825.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Matilla (1995). Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  18. S. Orey and S.J. Taylor (1974). How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc., 28, 174–192.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Peres (1996). Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré: Physique Théorique, 64, 339–347.

    MathSciNet  MATH  Google Scholar 

  20. E. Perkins and S.J. Taylor (1988), Measuring close approaches on a Brownian path, Ann. Prob., 16, 1458–1480.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Revuz and M. Yor (1994). Continuous Martingales and Brownian Motion, second edition. Springer, Berlin.

    MATH  Google Scholar 

  22. G.R. Shorack and J.A. Wellner (1986). Empirical Processes with Applications to Statistics. Wiley, New York.

    MATH  Google Scholar 

  23. S.J. Taylor (1966). Multiple points for the sample paths of the symmetric stable process, Z. Wahr. ver. Geb., 5, 247–64.

    Article  MathSciNet  MATH  Google Scholar 

  24. S.J. Taylor (1986). The measure theory of random fractals. Math. Proc. Camb. Phil. Soc., 100, 383–406.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Azéma Michel Ledoux Michel Émery Marc Yor

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Khoshnevisan, D., Shi, Z. (2000). Fast sets and points for fractional Brownian motion. In: Azéma, J., Ledoux, M., Émery, M., Yor, M. (eds) Séminaire de Probabilités XXXIV. Lecture Notes in Mathematics, vol 1729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103816

Download citation

  • DOI: https://doi.org/10.1007/BFb0103816

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67314-9

  • Online ISBN: 978-3-540-46413-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics