Skip to main content

Comportement asymptotique des fonctions harmoniques sur les arbres

  • Exposés
  • Chapter
  • First Online:
Séminaire de Probabilités XXXIV

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1729))

Abstract

Considering a random walk on an infinite tree, we suppose that transition probabilities are “reasonnable”, id est that they are bounded between two constants taken in (0, 1/2). It is shown that, for a given harmonic function on the tree, properties of radial convergence, radial boundedness, finiteness of radial energy and corresponding stochastic notions are all equivalent at almost each point of the geometric boundary. The idea of the proof comes from an analoguous result on Riemannian manifolds of pinched negative curvature due to the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Alano Ancona. Negatively curved manifolds, elliptic operators and the Martin boundary. Ann. of Math., 125:495–536, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alano Ancona. Positive harmonic functions and hyperbolicity. In J. Kràl et al., editor, Potential Theory, Surveys and Problems. Springer Lect. Notes in Math. 1344, Berlin, 1988.

    Google Scholar 

  3. M.T. Anderson and R. Schoen. Positive harmonic functions on complete manifolds of negative curvature. Ann. of Math., 121:429–461, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  4. Jean Brossard. Comportement non-tangentiel et comportement brownien des fonctions harmoniques dans un demi-espace. Démonstration probabiliste d'un théorème de Calderon et Stein. Séminaire de Probabilités, Université de Strasbourg, XII:378–397, 1978.

    MathSciNet  MATH  Google Scholar 

  5. A.P. Calderón. On a theorem of Marcinkiewicz and Zygmund. Trans. of A.M.S., 68:55–61, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.P. Calderón. On the behaviour of harmonic functions at the boundary. Trans. of A.M.S., 68:47–54, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Cartier. Fonctions harmoniques sur un arbre. In Symposia Mathematica, volume IX, pages 203–270. Academic Press, London and New-York, 1972.

    Google Scholar 

  8. Yves Derriennic. Marche aléatoire sur le groupe libre et frontière de Martin. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 32:261–276, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  9. Richard Durrett. Brownian Motion and Martingales in Analysis. Wadsworth Advanced Books & Software, 1984.

    Google Scholar 

  10. E.B. Dynkin and M.B. Malyutov. Random walks on groups with a finite number of generators. Soviet Math. Dokl., 2:399–402, 1961.

    MATH  Google Scholar 

  11. Pierre Fatou. Series trigonométriques et séries de Taylor. Acta Math., 30:335–400, 1906.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Korányi and R.B. Putz. Local Fatou theorem and area theorem for symmetric spaces of rank one. Trans. Amer. Math. Soc., 224:157–168, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Korányi and R.B. Putz. An area theorem for products of symmetric spaces of rank one. Bull. Sc. math., 105:3–16, 1981.

    MathSciNet  MATH  Google Scholar 

  14. Adam Korányi, Massimo A. Picardello, and Mitchell H. Taibleson. Hardy spaces on non-homogeneous trees. In Symposia Mathematica, volume XXIX, pages 205–254. Academic Press, London and New-York, 1987.

    Google Scholar 

  15. J. Marcinkiewicz and A. Zygmund. A theorem of Lusin. Duke Math. J., 4:473–485, 1938.

    Article  MathSciNet  MATH  Google Scholar 

  16. Frédéric Mouton. Comportement asymptotique des fonctions harmoniques en courbure négative. Comment. Math. Helvetici, 70:475–505, 1995.

    Article  MathSciNet  Google Scholar 

  17. Massimo A. Picardello and Wolfgang Woess. Finite truncations of random walks on trees. In Symposia Mathematica, volume XXIX, pages 255–265. Academic Press, London and New-York, 1987.

    Google Scholar 

  18. I.I. Privalov. Sur les fonctions conjuguées. Bull. Soc. Math. France, pages 100–103, 1916.

    Google Scholar 

  19. D.C. Spencer. A function theoric identity. Amer. J. Math., 65:147–160, 1943.

    Article  MathSciNet  MATH  Google Scholar 

  20. E.M. Stein. On the theory of harmonic functions of several variables II. Acta Math., 106:137–174, 1961.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Azéma Michel Ledoux Michel Émery Marc Yor

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Mouton, F. (2000). Comportement asymptotique des fonctions harmoniques sur les arbres. In: Azéma, J., Ledoux, M., Émery, M., Yor, M. (eds) Séminaire de Probabilités XXXIV. Lecture Notes in Mathematics, vol 1729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103813

Download citation

  • DOI: https://doi.org/10.1007/BFb0103813

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67314-9

  • Online ISBN: 978-3-540-46413-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics