Skip to main content

Concentrated emulsion polymerization

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 127))

Abstract

The present review summarizes results obtained in the last few years in this laboratory regarding the concentrated emulsion polymerization method. In this method, concentrated emulsions have been used as precursors for latexes of homopolymers, copolymers and tough polymers. They have also been employed to prepare conductive polymers, composites, composite membranes, microsponge molecular reservoirs and polymer supported quaternary onium salts, polymer supported palladium complexes and quaternary onium salts, polymer supported enzymes or cells. In contrast to the conventional emulsions, concentrated emulsions have a large volume fraction of dispersed phase, greater than 0.74 and as large as 0.99. When the volume fraction of the dispersed phase is sufficiently large, polyhedral cells of the dispersed phase are separated by thin films of continuous phase. Latexes have been prepared by dispersing a hydrophobic monomer(s) in a small amount of water containing a surfactant, or by dispersing a hydrophilic monomer(s) in a small amount of hydrocarbon (decane) containing a surfactant, and polymerizing the system. Composites have been prepared by dispersing an aqueous solution of a hydrophilic monomer(s) in a small amount of a solution of a hydrophobic monomer in a hydrocarbon, or by dispersing a solution of a hydrophobic monomer(s) in a hydrocarbon in a small amount of a solution of a hydrophilic monomer in water; this was followed by polymerization. Conventional emulsions, microemulsions or colloidal dispersions have been sometimes employed. It is important to emphasize that the polymerized system almost maintains the structure of the emulsion precursor employed.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AA:

acrylic acid

AAM:

acrylamide

Arkopal-N15:

α-(4-nonylphenil)-ω-hydroxypoly(oxy-1,2-ethanediyl)

AIBN:

azobisisobutyronitrile

BMA:

butylmethacrylate

CA:

cetyl alcohol

CMC:

critical micelle concentration

DSC:

differential scanning calorimetry

DMF:

dimethyl formamide

DVB:

divinyl benzene

EDS:

energy dispersive spectroscopy

EMA:

ethyl methacrylate

EO:

ethylene oxide

HLB:

hydrophilic-lipophilic balance

MAA:

methacrylic acid

MEHQ:

methyl hydroquinone

MMA:

methyl methacrylate

OA:

oleyl alcohol

PAA:

poly(acrylic acid)

PBMA:

poly(butyl methacrylate)

PDVB:

poly(divinylbenzene)

PMAA:

poly(methacrylic acid)

PMMA:

poly(methyl methacrylate)

PS:

polystyrene

PVBC:

poly(vinylbenzene chloride)

PVDC:

poly(vinylidene chloride)

SBS:

styrene-butadiene-styrene

SDS:

sodium dodecyl sulfate

Span 20:

sorbitan monolaurate

Span 80:

sorbitan monooleate

ST:

styrene

THF:

tetrahydrofuran

Triton X-100:

α-[4-(1,1,3,3-tetramethylbutyl)phenyl]-ω-hydroxypoly(oxy-1,2-ethanediyl)

Tween 20:

polyoxyethylene sorbitan monolaurate

VBC:

vinylbenzene chloride

VDC:

vinylidene chloride

14 References

  1. Lissant KJ (1966) J Colloid Interface Sci 22: 492

    Article  Google Scholar 

  2. Lissant KJ, Mayhan KG (1972) J Colloid Interface Sci 42: 201

    Article  Google Scholar 

  3. Lissant KJ, Peace BW, Wu SH, Mayhan KG (1974) J Colloid Interface Sci 47: 416

    Article  CAS  Google Scholar 

  4. Princen HM, Aronson MD, Moser JC (1980) J Colloid Interface Sci 75: 246

    Article  CAS  Google Scholar 

  5. Princen HM (1983) J Colloid Interface Sci 91: 160; (1985) J Colloid Interface Sci 105: 150

    Article  CAS  Google Scholar 

  6. Princen HM, Kiss AD (1986) J Colloid Interface Sci 112: 427

    Article  CAS  Google Scholar 

  7. Kraynick AM, Hansen MG (1986) J Rheology 30: 409

    Article  ADS  Google Scholar 

  8. Ruckenstein E, Ebert G, Platz G (1989) J Colloid Interface Sci 133: 432

    Article  CAS  Google Scholar 

  9. Bhakta A, Ruckenstein E (1995) Langmuir 11: 1486

    Article  CAS  Google Scholar 

  10. Bhakta A, Ruckenstein E (1995) Langmuir 11: 4642

    Article  CAS  Google Scholar 

  11. Ruckenstein E, Park JS (1992) Polymer 33: 405

    Article  CAS  Google Scholar 

  12. Ruckenstein E, Kim KJ (1988) J Applied Polym Sci 36: 907

    Article  CAS  Google Scholar 

  13. Kim KJ, Ruckenstein E (1988) Makromol Chem Rapid Commun 9: 285

    Article  CAS  Google Scholar 

  14. Ruckenstein E, Park JS (1988) J Polym Sci (C) Polym Lett 26: 529

    Article  CAS  Google Scholar 

  15. Becher P (1965) Emulsion, Theory and Practice. Reinhold, New York

    Google Scholar 

  16. Smith AL (1976) Theory and Practice of Emulsion Technology, Academic Press, New York Ch 19

    Google Scholar 

  17. Chen HH, Ruckenstein E (1990) J Colloid Interface Sci 138: 473

    Article  CAS  Google Scholar 

  18. Chen HH, Ruckenstein E (1991) J Colloid Interface Sci 145: 260

    Article  CAS  Google Scholar 

  19. Rosen MJ (1989) Surfactants and Interfacia Phenomena, 2nd Edn Wiley, New York

    Google Scholar 

  20. Schick MJ (1967) Nonionic Surfactants, Marcel Dekker, New York Vol 1

    Google Scholar 

  21. Sun F, Ruckenstein E (1993) J Applied Polymer Sci 48: 1773

    Article  Google Scholar 

  22. Dimonie MV, Boghina CM, Marinescu MM, Cincu CI, Oprescu CG (1982) Eur Polymer J 18: 639

    Article  CAS  Google Scholar 

  23. Kurata M, Tsunashima Y, Iwama M, Kamada K (1975) in Polymer Handbook (Brandup J, Immergut EH Eds) 2nd edition Wiley-Interscience, New York p IV: 9

    Google Scholar 

  24. Ruckenstein E, Kim JK (1989) J Polym Sci Part A Polym Chem 27: 4375

    Article  CAS  Google Scholar 

  25. Ruckenstein E, Sun F (1992) J Appl Polym Sci 46: 1271

    Article  CAS  Google Scholar 

  26. Ruckenstein E, Park JS (1989) Chem Mat 1: 343

    Article  CAS  Google Scholar 

  27. Sperling LH (1991) Polym Mater Sci Eng 65: 80

    CAS  Google Scholar 

  28. Manson JA, Sperling LH (1976) Polymer Blends and Composites, Plenum Press, New York

    Google Scholar 

  29. Ruckenstein E, Li H (1994) J Apply Polym Sci 52: 1949

    Article  CAS  Google Scholar 

  30. Ruckenstein E, Li H (1994) J Apply Polym Sci 54: 561

    Article  CAS  Google Scholar 

  31. Ruckenstein E, Li H (1994) Polymer 35: 4343

    Article  CAS  Google Scholar 

  32. Brydson JA (1979) Plastic Materials, 3rd Ed newnes-Butterworths, London

    Google Scholar 

  33. Zutty NL, Whitworth SJ (1964) J Polymer Sci B 2: 709

    Article  CAS  Google Scholar 

  34. Brandrup J, Immergut EH (1989) Ed Polymer Handbook, 3rd Ed John Wiley & Sons, New York

    Google Scholar 

  35. Lee KC, El-Aasser MS, Vanderhoff JW (1991) J Appl Polym Sci 42: 3133

    Article  CAS  Google Scholar 

  36. Ruckenstein E, Park JS (1990) Polymer 31: 2397

    Article  CAS  Google Scholar 

  37. Park JS, Ruckenstein E (1990) Polymer 31: 175

    Article  CAS  Google Scholar 

  38. Nixon JR (1976) Microencapsulation, Marcel Dekker Inc, New York

    Google Scholar 

  39. Das KG (1983) Controlled Release Technology, Wiley, Interscience, New York

    Google Scholar 

  40. Bakan JA (1980) Microencapsulation Using Coacervation/phase Separation Techniques in Controlled Release Technologies: Method, Theory, and Applications (Ed Kydoneius AF), CRC Press, Florida

    Google Scholar 

  41. Koestler RC (1980) Microencapsulation by Interfacial Polymerization Techniques — Agricultural Applications in Controlled Release Technologies: Methods, Theory, and Applications (Ed Kydoneius AF), CRC Press, Florida

    Google Scholar 

  42. Brynko C (1961) US Patent 2969330

    Google Scholar 

  43. Goldenhersh KK, Huang W, Manson NS, Sparks RE (1976) Kidney Int 10: 251

    Google Scholar 

  44. Hasegawa M, Arai K, Saito S (1987) J Polym Sci Polym Chem Edn 25: 3117

    Article  CAS  Google Scholar 

  45. Hasegawa M, Arai K, Saito S (1987) J Appl Polym Sci 33: 411

    Article  CAS  Google Scholar 

  46. Ruckenstein E, Hong L (1992) Chem Mat 4: 1032

    Article  CAS  Google Scholar 

  47. Hong L, Ruckenstein E (1995) J of Molecular Catalysis A: Chemical 101: 115

    Article  CAS  Google Scholar 

  48. Eury R, Patel R, Longe K, Cheng T, Nacht S (1992) Chemtech Jan 42

    Google Scholar 

  49. Sherrington DC (1982) In Macromolecular Syntheses; Pearce EM, Ed Wiley, New York Vol 8 p 30

    Google Scholar 

  50. Howard GJ, Midgley CA (1981) J Appl Polym Sci 26: 3845

    Article  CAS  Google Scholar 

  51. Ruckenstein E, Hong L (1992) Chem Mater 4: 122

    Article  CAS  Google Scholar 

  52. Guyot A, Bartholin M (1982) Prog Polym Sci 8: 277

    Article  CAS  Google Scholar 

  53. Alper H, Aroumainian H, Petrignani JF, Manul J (1985) J Chem Soc Chem Commun 340

    Google Scholar 

  54. Edgell WF,Lyford IV (1970) J Chem Phys 52: 4329

    Article  CAS  Google Scholar 

  55. (a) Alper H (1991) Aldrichimica 24: 3 (b) Brunet J (1990) J Chem Rev 1041

    Google Scholar 

  56. Mauz O, Sauber K, Noetzel S (1985) US Patent 4,542,069

    Google Scholar 

  57. Bayer E (1991) E Angew Chem Int Ed Engl 30: 113

    Article  Google Scholar 

  58. Ruckenstein E (1989) Colloid Polymer Sci 267: 792

    Article  CAS  Google Scholar 

  59. Park JS, Ruckenstein E (1989) J Appl Polym Sci 38: 453

    Article  CAS  Google Scholar 

  60. Ruckenstein E, Park JS (1990) J Appl Polym Sci 40: 213

    Article  CAS  Google Scholar 

  61. Ruckenstein E, Chen HH (1991) J Appl Polym Sci 42: 2429

    Article  CAS  Google Scholar 

  62. Ruckenstein E, Sun F (1993) J Membrane Sci 81: 191

    Article  CAS  Google Scholar 

  63. Sun F, Ruckenstein E (1993) J Membrane Sci 85: 59

    Article  CAS  Google Scholar 

  64. Sun F, Ruckenstein E (1994) J Membrane Sci 90: 275

    Article  CAS  Google Scholar 

  65. Ruckenstein E, Park JS (1991) J Applied Polym Sci 42: 925

    Article  CAS  Google Scholar 

  66. Ruckenstein E, Park JS (1991) Synth Met 44: 293

    Article  CAS  Google Scholar 

  67. Ruckenstein E, Chen JH (1991) J Appl Polym Sci 43: 1209

    Article  CAS  Google Scholar 

  68. Park JS, Ruckenstein E (1992) J Electronic Mat 21: 205

    Article  CAS  Google Scholar 

  69. Ruckenstein E, Yang S (1993) Synth Met 53: 283

    Article  CAS  Google Scholar 

  70. Yang S, Ruckenstein E (1993) Synth Met 60: 249

    Article  CAS  Google Scholar 

  71. Hong L, Ruckenstein E (1992) Polymer 33: 1968

    Article  CAS  Google Scholar 

  72. Hong L, Ruckenstein E (1991–92) Reactive Polymers 16: 181

    Article  Google Scholar 

  73. Ruckenstein E, Hong L (1992) J Catalysis 136: 378

    Article  CAS  Google Scholar 

  74. Ruckenstein E, Wang X (1993) Biotechnol Bioeng 42: 821

    Article  CAS  Google Scholar 

  75. Ruckenstein E, Wang X (1994) Biotechnol Bioeng 44: 79

    Article  CAS  Google Scholar 

  76. Barby D, Haq Z (1982) Eur Pat 0,060,138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Ruckenstein, E. (1997). Concentrated emulsion polymerization. In: Polymer Synthesis/Polymer Catalysis. Advances in Polymer Science, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103628

Download citation

  • DOI: https://doi.org/10.1007/BFb0103628

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61288-9

  • Online ISBN: 978-3-540-68444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics