Advertisement

Cosmology as a problem in critical phenomena

  • Lee SmolinEmail author
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 461-461)

Abstract

Several problems in cosmology and astrophysics are described in which critical phenomena of various types may play a role. These include the organization of the disks of spiral galaxies, various aspects of the problem of structure formation in cosmology, the problem of the selection of initial conditions and parameters in particle physics and cosmology and the problem of recovering the classical limit from non-perturbative formulations of quantum gravity.

A measure of complexity which is suggested by these applications, but which may also have application to other problems, is described.

Keywords

Black Hole Dark Matter Neutron Star Quantum Gravity Star Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. M. White, J. F. Navarro, A. E. Evrard, C. S. Frenk, Nature 366 (1993) 429–433CrossRefADSGoogle Scholar
  2. 2.
    P. Coles and G. Ellis, The case for an open universe Department of Applied Math prprint, Capetown (1994).Google Scholar
  3. 3.
    See for example, J. Bachall, in the Proceedings of Some Unsolved Problems in Astrophysics.Google Scholar
  4. 4.
    Mather, J. C. et al, Ap. J. 354 (1990) L37.CrossRefADSGoogle Scholar
  5. 5.
    V. De Lapparent, M.J. Geller and J.P. Huchra Ap. J. 302 (1986) L1; M. P. Haynes and R. Giovanelli, Ap. J. 306 (1986) L55.CrossRefADSGoogle Scholar
  6. 6.
    L J For an excellent review, see Garay: “Quantum gravity and minimum length”, Imperial College preprint/TP/93–94/20, gr-qc/9403008 (1994)Google Scholar
  7. 7.
    F. Hoyle, D. N. F. Dunbar, W. A. Wensel and W. Whaling, Phys. Rev. 92 (1953) 649; F. Hoyl, Galaxies, Nuclei and quasars (Heinemann, London, 1965), p. 146.CrossRefADSGoogle Scholar
  8. 8.
    B. J. Carr and M. J. Rees, Nature 278 (1979) 605.CrossRefADSGoogle Scholar
  9. 9.
    J. D. Barrow and F. J. Tipler, The Anthropic Cosmological Principle (Oxford University Press, Oxford, 1986).Google Scholar
  10. 10.
    B. Carter, “The significance of numerical coincidences in nature”, unpublished preprint, Cambridge University, 1967; in Confrontation of Cosmological Theories with Observational Data, IAU Symposium No. 63, ed. M. Longair (Reidel, Dordrecht, 1974) p. 291.Google Scholar
  11. 11.
    P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. A 38 (1988) 364; Phys. Rev. Lett. 59 (1987) 381.CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    P. Bak and Maya Paczuski, “Complexity, contingency and criticality” Brookhaven preprint.Google Scholar
  13. 13.
    S. Mineshinge, N. B. Ouchi and H. Nishimori, PASJ 46 (1994) 97; S. Mineshinge, M. Takeuchi and H. Nishimori, Ap. J. 435 (1994) L125.ADSGoogle Scholar
  14. 14.
    H. Gerola and P. E. Seiden, Ap. J. 223 (1978) 129; P. E. Seiden, L. S. Schulman and H. Gerola, Stochastic star formation and the evolution of galaxies, Astrophys. J. 232 (1979) 702–706; P. E. Seiden and L. S. Schulman, Percolation and galaxies Science 233 (1986) 425–431 Percolation model of galactic structure, Advances in Physics, 39 (1990) 1–54; L. S. Schulman, “Modeling galaxies: cellular automana and percolation”, to appear in Cellular Automata: Prospects in Astrophysical Applications, A. Lejeune and J. Perdang, eds. World Scientific, Singapore (1993).CrossRefADSGoogle Scholar
  15. 15.
    P. Seiden, L.S. Schulman and H. Gerola, Ap. J. 232 (1979) 702.CrossRefADSGoogle Scholar
  16. 16.
    See, for example: J. Franco and D. P. Cox, Self-regulated star formation in the galaxy, Astrophys. J. 273 (1983) 243–248; J. Franco and S. N. Shore The galaxy as a self-regulated star forming system: The case of the OB associations Astrophys. J. 285 (1984) 813–817; S. Ikeuchi, A. Habe and Y. D. Tanaka The interstellar medium regulated by supernova remnants and bursts of star formation MNRAS 207 (1984) 909–927; R.F.G. Wyse and J. Silk Evidence for supernova regulation of metal inrichment in disk galaxies Astrophys. J. 296 (1985) 11–15; M. A. Dopita, A law of star formation in disk galaxies: Evidence for self-regulating feedback Astrophys. J. 295 (1985) L5–L8; G. Hensler and A. Burkert, Self-regulated star formation and evolution of the interstellar medium Astrophys. and Space Sciences 171 (1990) 149–156.CrossRefADSGoogle Scholar
  17. 17.
    R. F. G. Wyse and J. Silk, Astrophys. J. 339 (1989) 700.CrossRefADSGoogle Scholar
  18. 18.
    See, for example, The Physics and Chemistry of Interstellar Molecular Clouds ed. G. Winnewisser and J.T. Armstrong, Springer Verlag Lecture Notes in Physics 331 (1989); Molecular Coulds in the Milky Way and External Galaxies ed. R. L. Dickman, R. L. Snell and J. S. Young Springer Verlag Lecture Notes in Physics 315 (1988).Google Scholar
  19. 19.
    B. G. Elmegreen Triggered Star Formation IBM Research Report, in the Proceedigs of the III Canary Islands Winter School, 1991, eds. G. Tenorio-Tagle, M. Prieto and F. Sanchez (Cambridge University Press, Cambridge, 1992).Google Scholar
  20. 20.
    B. G. Elmegreen, Large Scale Dynamics of the Interstellar Medium, to appear in Interstellar Medium, processes in the galactic diffuse matter ed. D. Pfenniger and P. Bartholdi, Springer Verlag, 1992.Google Scholar
  21. 21.
    A. Parravano, Self-regulating star formation in isolated galaxies: thermal instabilities in the interstellar medium Astron. Astrophys. 205 (1988) 71–76; A selfregulated star formation rate as a function of global galactic parameters Astrophys. J. 347 (1989) 812–816; A. Parravano and J. Mantilla Ch., A self-regulated state for the interstellar medium: radial dependence in the galactic plane, Atrophys. J. 250 (1991) 70–83; A. Parravano, P. Rosenzweig and M. Teran, Galactic evolution with self-regulated star formation: stability of a simple one-zone model Astrophys. J. 356 (1990) 100–109.ADSGoogle Scholar
  22. 22.
    See, for example, F. H. Shu, F. C. Adams and S. Lizano Star formation in molecular clouds: observation and theory in Ann. Rev. Astron. Astrophy., 25 (1987) 23–81 and C. J. Lada and F. H. Shu, The formation of sunlike stars Berkely preprint, to appear in Science and references contained therein.Google Scholar
  23. 23.
    E. E. Salpeter, Astrophys. J. 121 (1955) 161.CrossRefADSGoogle Scholar
  24. 24.
    G. E. Miller and J. Scalo, Ap. J. Suppl. 41 (1979) 513; J. Scalo, Fundamentals of Cosmic Physics 11 (1986) 1–278.CrossRefADSGoogle Scholar
  25. 25.
    R. B. Larson M.N.R.A.S. 214 (1985) 379; 218 (1986) 409.ADSGoogle Scholar
  26. 26.
    J. Scalo, in Physical Processes in Fragmentation and Star Formation ed. R. Capuzzo-Dolcetta, C. Ciosi and A. Di Fazio (Klower, 1990)Google Scholar
  27. 27.
    B. Elmegreen and M. Thomasson, Grand design and flocculent spiral structure in computer simulations with star formation and gas heating Astron. and Astrophys. (1992)?.Google Scholar
  28. 28.
    M. Bucher, A. S. Goldhaber and N. Turok, “An open universe from inflation”, hep-ph/9411206, iassns-hep-94-81. PUPT-94-1507; M. Bucher and N. Turok, “Open inflation with arbitrary false vacuum mass” hep-ph 9503393, PUPT-95-1518; J.R. Gott, Nature 295 (1982) 304.Google Scholar
  29. 29.
    Walker, T. P, Steigman, G., Kang, H.-S., Schramm, D. M., & Olive, K. 1991Google Scholar
  30. 30.
    See, for example, S. D. M. White, MAP preprint, 1994; S. D. M. White and C. S. Frenk, Ap. J. (1991) 379, 52; G. Efstathios and J. Silk, Fund. Cos. Phys. 9 (1983) 1.Google Scholar
  31. 31.
    J.P. Ostriker and L.L. Cowie, Ap. J. 243 (1981) L127.CrossRefADSGoogle Scholar
  32. 32.
    S. Ikeuchi, Publ. Astron. Soc. Japan 33 (1981) 211.ADSGoogle Scholar
  33. 33.
    J.P. Ostriker, C. Thompson and E. Witten, Phys. Lett. B (1986).Google Scholar
  34. 34.
    R.A. Daley (1986)Google Scholar
  35. 35.
    N. Yu. Gnedin and J. P. Ostriker, Astrophys. J. 400 (1992) 1–20CrossRefADSGoogle Scholar
  36. 36.
    P.J.E. Peebles, in The Early Universe ed. W.G. Unruh and G.W. Semenoff, D. Reidal Publishing, 1988, p. 203; in the proceedings of the 8th IAP meeting, First light in the universe Google Scholar
  37. 37.
    C. Hogan, Ap. J. 415 (1993) L63–66.CrossRefADSGoogle Scholar
  38. 38.
    P. Petitjean, J. K. Webb, M. Rauch, R.F. Carswell and K. Lanzetta, MNRAS 262 (1993) 499; K.M. Lanzetta, A. M. Wolfe, D. Ai Turnshek, Limin Lu, R.G. McMahon and C. Hazard, Ap. J. Suppl. Series. 77 (1991) 1.ADSGoogle Scholar
  39. 39.
    J. Charlton, E. Salpeter and C. J. Hogan, Ap. J. 402 (1993) 493; J. Charlton, E. Salpeter and S. M. Linder, “Competition between pressure and gravity confinement in Lyman alpha forest observations”, ApJ, 430, L29 (1994).CrossRefADSGoogle Scholar
  40. 40.
    Lanzetta, K. M., Bowen, D. V., Tytler, D., and Webb, J. K. 1995, ApJ, 442, 538; Steidel, C. 1995, in Proceedings of ESO Workshop on QSO Absorption Lines, ed. G. Meylan, (Springer-Verlag: heidelberg), in pressCrossRefADSGoogle Scholar
  41. 41.
    Richard Ellis “The morphological evolution of galaxies” in Unsolved Problems in Astrophysics op. cit. Google Scholar
  42. 42.
    Broadhurst, R. J., Ellis, R. S., & Shanks, T. 1988, MNRAS, 235, 927 Colless, M. M., Ellis, R. S., Taylor, K., & Hook, R. N. 1989, MNRAS, 244,408 Songaila, A., Cowie, L. L., Hu, E. M., & Gardner, J. P. 1994, ApJS, 44, 461Google Scholar
  43. 43.
    J. Peebles, Principles of Physical Cosmology (Princeton University Press, 1993).Google Scholar
  44. 44.
    For a general review, see N. Bachall and J. Ostriker, in the Proceedings of the Conference on Unsolved problems in Astrophysics, op. cit.. See also R.Y. Cen and J. P. Ostriker, Ap. J. 339 (1992) L113; 404 (1993) 415; 417 (1993) 415; D. Ryu, J.P. Ostriker, H. Kang and R.Y. Cen, Ap.J. 414 (1993) 1Google Scholar
  45. 45.
    M. Carfora and K. Piotrokowska, “A renormalization group approach to relativistic cosmology”, to appear in Phys. Rev. D.Google Scholar
  46. 46.
    W. H. Press and P. Schecter, Ap. J. 187 (1974) 425.CrossRefADSGoogle Scholar
  47. 47.
    S. D. M. White, G. Efstathiou and C. S. Frenk, Mon. Not. R. Astro. Soc. 262 (1993) 1023; A. Klypin, J. Holtzmann, J. Primack and E. Regos Ap. J. 416 (1993) 1; Lacey and Cole, MNRAS (1994)ADSGoogle Scholar
  48. 48.
    K. Chen and P. Bak, Phys. Lett. A 140 (1989) 299.CrossRefADSGoogle Scholar
  49. 49.
    L. S. Schulman and P. E. Seiden, Ap. J. 311 (1986) 1.CrossRefADSGoogle Scholar
  50. 50.
    B.J. Carr, “Baryonic dark matter”, to appear in AnnualReviews of Astronomy and Astrophysics, 1995.Google Scholar
  51. 51.
    A. Strominger, “Massless black holes and conifolds in string theory”, preprint hep-th/9504090.Google Scholar
  52. 52.
    L. Smolin Classical and Quantum Gravity 9 (1992) 173–191CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    L. Smolin, On the fate of black hole singularities and the parameters of the standard model gr-gc??Google Scholar
  54. 54.
    L. Smolin, The Life of the Cosmos to appear in Oct. 95, Crown Press, New York, and Orion Press, London.Google Scholar
  55. 55.
    J.A. Wheeler, in Gravitation, by C. Misner, K. Thorne and J. A. Wheeler, last chapter.Google Scholar
  56. 56.
    E. Martinec, 1994, hep-th/9412074Google Scholar
  57. 57.
    R. Gott, private communication.Google Scholar
  58. 58.
    G. E. Brown and H. A. Bethe, Astro. J. 423 (1994) 659; 436 (1994) 843, G. E. Brown, Nucl. Phys. A574 (1994) 217; G. E. Brown, “Kaon condensation in dense matter”; H. A. Bethe and Ge. E. Brown, “Observational constraints on the maximum neutron star mass”, preprints.CrossRefADSGoogle Scholar
  59. 59.
    S. E. Thorsett, Z. Arzoumanian, M.M. McKinnon and J. H. Taylor Astrophys. Journal Letters 405 (1993) L29CrossRefGoogle Scholar
  60. 60.
    M. Rees, MNRAS 176 (1976) 483; J. Silk Ap. J. 211 (1976) 638.ADSGoogle Scholar
  61. 61.
    For a review, see J. Ambjorn, J. Jerkiewicz and Y. Watabiki, “Dynamical triangutations, a gateway to quantum gravity”, NBI-HE-95-08, to appear in J. Math. Phys. Nov. 1995.Google Scholar
  62. 62.
    M.E. Agishtein and A.A. Migdal, Nucl. Phys. B 385 (1982) 395.CrossRefADSMathSciNetGoogle Scholar
  63. 63.
    J. Ambjorn, J. Jerkiewicz and C. F. Kristjansen, Nucl. Phys. B 393 (1993) 601; Phys. Lett. B305 (1993) 208; J. Ambjorn, Z. Burda, J. Jerkiewicz and C. F. Kristjansen, Phys. Rev. d48 (1993) 3695.CrossRefADSGoogle Scholar
  64. 64.
    H. W. Hamber, Nucl Phys. B (Proc. Supp.) 20 (1991) 728; 25A (1992) 150; B400 (1993) 347; Phys. Rev. D45 (1992) 507; H. W. Hamber and R. M. williams, Nucl. Phys. B415 (1994) 463.zbMATHCrossRefADSMathSciNetGoogle Scholar
  65. 65.
    T. Regge, Nuovo Cimento 19 (1961) 558.MathSciNetCrossRefGoogle Scholar
  66. 66.
    S. Weinberg, in General relativity: An Einstein Survey ed. S. Hawking and W. Israel (Cambridge University Press, 1979). L. Smolin, Nuclear Physics B208 (1982) 439.Google Scholar
  67. 67.
    C Rovelli: Class Quant Grav 8 (1991) 1613zbMATHCrossRefADSMathSciNetGoogle Scholar
  68. 68.
    A Ashtekar: Non perturbative canonical gravity, World scientific, Singapore 1991zbMATHGoogle Scholar
  69. 69.
    L Smolin: in Quantum Gravity and Cosmology, eds J Pérez-Mercader et al, World Scientific, Singapore 1992Google Scholar
  70. 70.
    A Ashtekar C Rovelli L Smolin: Phys Rev Lett 69 (1992) 237zbMATHCrossRefADSMathSciNetGoogle Scholar
  71. 71.
    C. Rovelli and L. Smolin, Discreteness of volume and area in quantum gravity, to appear in Nucl. Phys. B 1995.Google Scholar
  72. 72.
    R Penrose: in Quantum theory and beyond ed T Bastin, Cambridge U Press 1971; in Advances in Twistor Theory, ed. L. P. Hughston and R. S. Ward, (Pitman, 1979) p. 301; in Combinatorial Mathematics and its Application (ed. D. J. A. Welsh) (Academic Press, 1971).Google Scholar
  73. 73.
    C. Rovelli and L. Smolin, “Spin networks and quantum gravity” Penn State CGPG-95/4-4 and IASSNS-HEP-95/27 preprint, gr-qc/9505006.Google Scholar
  74. 74.
    L Smolin: in Directions in General Relativity, v. 2, papers in honour of Dieter Brill, ed BL Hu T Jacobson, Cambridge University Press, Cambridge 1994Google Scholar
  75. 75.
    C. Rovelli and L. Smolin, Phys Rev Lett 72 (1994) 446zbMATHCrossRefADSMathSciNetGoogle Scholar
  76. 76.
    R. Borissov, C. Rovelli and L. Smolin, Nonperturbative dynamics of quantum general relativity preprint in preparation. C. Rovelli, to appear in J. Math Phys. Nov. (1995).Google Scholar
  77. 77.
    J Iwasaki C Rovelli: Int J of Mod Phys D 1 (1993) 533; Class and Quantum Grav 11 (1994) 1653CrossRefADSMathSciNetGoogle Scholar
  78. 78.
    J. Stachel, Einstein's search for general covariance 1912–1915 in Einstein and the History of General Relavity ed. by D. Howard and J. Stachel, Einstein Studies, Volume 1 (Birkhauser, Boston, 1989).Google Scholar
  79. 79.
    Leibniz, The Monadology in Leibniz, Philosophical Writings ed. G.H.R. Parkinson, translated by M. Morris and G.H.R. Parkinson (Dent, London, 1973)Google Scholar
  80. 80.
    J. B. Barbour and L. Smolin, Syracuse University preprint, SU-GP-92/2–4, see also J. B. Barbour, “On the origin of structure in the universe,” presented at the “3d Philosophy and Physics Workshop”, Forschungsstatte der Evangelischen Studiengemeinschaft (FEST) in Heidelberg, May 1990. To be published in “Philosophy and Modern Physics”, publ. by Springer; Mathematical Modeling of the Monodology, submitted for publication and L. Smolin Space and Time in the Quantum Universe in Conceptual Problems of Quantum Gravity ed. by A. Ashtekar and J. Stachel, (Birkhauser, Boston, 1991).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  1. 1.Center for Gravitational Physics and Geometry, Department of PhysicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations