Skip to main content

The structure of quantum conformal superspace

  • Part II Global Structures
  • Conference paper
  • First Online:
Book cover Global Structure and Evolution in General Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 460))

Abstract

For a compact connected orientable n-manifold M, n≥3, we study the structure of classical superspace S≡M/D, quantum superspace S 0≡M/D0, classical conformal superspace C≡M/P/D, and quantum conformal superspace C 0≡M/P/D0. The study of the structure of these spaces is motivated by questions involving reduction of the canonical Hamiltonian formulation of general relativity to a non-degenerate Hamiltonian formulation, and to questions involving both linearization stability and quantization of the gravitational field. We show that if the degree of symmetry of M is zero, then S, S 0, C, and C 0 are ilh-orbifolds. The case of most importance for general relativity is dimension n=3. In this case, for a broad class of 3-manifolds for which deg M=0, we show that quantum superspace S 0 and quantum conformal superspace C 0 are in fact ilh-manifolds. If M is a Haken 3-manifold with deg M=0, then quantum superspace and quantum conformal superspace are contractible ilh-manifolds. Under these circumstances, there are no Gribov ambiguities for the configuration spaces S 0 and C 0. Our results are also applicable to the problem of reduction of Einstein's vacuum equations, to linearization stability, and to the problem of quantization of the gravitational field. Our results can be used to reduce the canonical Hamiltonian formulation, together with its constraint equations, to an unconstrained Hamiltonian system. On the reduced phase space the canonical variables are free, or unconstrained, and carry complete information about the true degrees of freedom of the gravitational field. The structure of the reduced phase space is also of importance in understanding certain questions involving linearization stability and quantization of the gravitational field. For questions regarding linearization stability, the cotangent bundle of C plays a role in understanding the symplectic structure of the space of true degrees of freedom of the gravitational field. For questions regarding quantization, the space C 0 plays the role of the reduced configuration space for quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnowitt, R, Deser, S, and Misner, C (1962), The dynamics of general relativity, in Gravitation: an introduction to current research, L. Witten, editor, John Wiley and Sons, Inc., New York.

    Google Scholar 

  2. Balachandran, A P (1989), Classical topology and quantum phases: quantum mechanics, in Geometrical and Algebraic Aspects of Nonlinear Field Theory, S. De Filippo, M. Marinaro, G. Marmo, and G. Vilasi, editors, Elsevier Science Publishers.

    Google Scholar 

  3. Bourguignon, J-P (1975), Une stratification de l'espace des structures riemanniennes, Compositio Math. 30, 1–41.

    MathSciNet  MATH  Google Scholar 

  4. Bröcker, T, and Jänich, K (1982), Introduction to Differential Topology, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  5. Davis, J F, and Milgram, R J (1985), A Survey of the Spherical Space Form Problem, Mathematical Reports, Volume 2, Part 2, Harwood Academic Publishers, New York.

    Google Scholar 

  6. Davis, M, and Morgan, J (1984), Finite group actions on homotopy 3-spheres, in The Smith Conjecture, Morgan, J, and Bass, H, editors, Academic Press, Inc., New York.

    Google Scholar 

  7. DeWitt, B (1967a), Quantum theory of gravity. I. The canonical theory, Physical Review 160, 1113–1148.

    Article  ADS  Google Scholar 

  8. DeWitt, B (1967b), Quantum theory of gravity, II. The manifestly convariant theory, Physical Review 162, 1195–1239.

    Article  ADS  Google Scholar 

  9. DeWitt, B (1967c), Quantum theory of gravity, III. Application of the covariant theory, Physical Review 162, 1239–1256.

    Article  ADS  Google Scholar 

  10. DeWitt, B (1970), Spacetime as a sheaf of geodesics in superspace, in Relativity, M. Carmeli, S. Fickler, and L. Witten, editors, Plenum Press, New York.

    Google Scholar 

  11. Earle, C, and Eells, J (1969), A fibre bundle description of Teichmüller theory, J. Diff. Geom., 3, 19–43.

    MathSciNet  MATH  Google Scholar 

  12. Ebin, D, (1970), The space of Riemannian metrics, Proc. Symp. Pure Math., Amer. Math. Soc. 15, 11–40.

    MathSciNet  Google Scholar 

  13. Ebin, D, and Marsden, J (1970), Groups of diffeomorphisms and the motion of an incompressible fluid, Annals of Mathematics 92, 102–163.

    Article  MathSciNet  Google Scholar 

  14. Edmonds, A (1985), Transformation groups and lowdimensional manifolds, in Group Actions on Manifolds, Contemporary Mathematics, Volume 36, R. Schultz, editor, 339–366.

    Google Scholar 

  15. Ellis, G (1971), Topology and cosmology, General Relativity and Gravitation 2, 7–21.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Fischer, A (1970), The theory of superspace, in Relativity, M. Carmeli, S. Fickler, and L. Witten, editors, Plenum Press, New York.

    Google Scholar 

  17. Fischer, A, and Marsden, J (1975), Deformations of the scalar curvature, Duke Mathematical Journal 42, 519–547.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fischer, A, and Marsden, J (1977), The manifold of conformally equivalent metrics, Canadian Journal of Mathematics, 1, 193–209.

    Article  MathSciNet  Google Scholar 

  19. Fischer, A, and Moncrief, V (1994a), Reducing Einstein's equations to an unconstrained Hamiltonian system on the cotangent bundle of Teichmüller space, in Physics on Manifolds, Proceedings on the International Colloquium in honour of Yvonne Choquet-Bruhat, M. Flato, R. Kerner, and A. Lichnerowicz, editors, Kluwer Academic Publishers, Boston, 111–151.

    Google Scholar 

  20. Fischer, A, and Moncrief, V (1994b), Classical and conformal superspace, linearization stability, and the reduction of Einstein's equations, in Proceedings of the Cornelius Lanczos International Centenary Conference, J. Brown, M. Chu, D. Ellison, and R. Plemmons, editors, Society for Industrial and Applied Mathematics, Philadelphia, 535–542.

    Google Scholar 

  21. Fischer, A, and Moncrief, V (1995a), A method of reduction for Einstein's equations of evolution and a natural symplectic structure on the space of quantum gravitational degrees of freedom, General Relativity and Gravitation.

    Google Scholar 

  22. Fischer, A, and Moncrief, V (1995b), Quantum conformal superspace, General Relativity and Gravitation.

    Google Scholar 

  23. Fischer, A, and Tromba, A (1984a), On a purely “Riemannian” proof of the structure and dimension of the unramified moduli space of a compact Riemann surface, Mathematische Annalen 267, 311–345.

    Article  MathSciNet  MATH  Google Scholar 

  24. Fischer, A, and Tromba, A (1984b), Almost complex principle fiber bundles and the complex structure on Teichmüller space, J. für die reine und angewandte Mathematik 352, 151–160.

    MathSciNet  MATH  Google Scholar 

  25. Fischer, A, and Tromba, A (1984c), On the Weil-Petersson metric on Teichmüller space, Trans. Amer. Math. Soc. 284, 319–335.

    Article  MathSciNet  MATH  Google Scholar 

  26. Fischer, A, and Tromba, A (1987), A new proof that Teichmüller space is a cell, Trans. Amer. Math. Soc. 303, 257–262.

    Article  MathSciNet  MATH  Google Scholar 

  27. Freed, D, and Groisser, D (1989), The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group, Michigan Math. J. 36, 323–344.

    Article  MathSciNet  MATH  Google Scholar 

  28. Friedman, J (1990), Space-time topology and quantum gravity, in Conceptual problems in quantum gravity, A. Ashtekar and J. Stachel, editors, Birkhäuser, Boston, 539–572.

    Google Scholar 

  29. Friedman, J, and Witt, D (1986), Homotopy is not isotopy for homeomorphisms of 3-manifolds, Topology 25, 35–44.

    Article  MathSciNet  MATH  Google Scholar 

  30. Freedman, M, and Yau, S-T (1983), Homotopically trivial symmetries of Haken manifolds are toral, Topology 22, 179–189.

    Article  MathSciNet  MATH  Google Scholar 

  31. Gil-Medrano, O, and Michor, P (1991), The Riemannian manifold of all Riemannian metrics, Quart. J. Math. Oxford (2) 42, 183–202.

    Article  MathSciNet  MATH  Google Scholar 

  32. Giulini, D (1994), 3-manifolds for relativists, International Journal for Theoretical Physics, 33, 913–930.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Giulini, D (1995), On the configuration-space topology in general relativity, Helvetica Physica Acta, to appear.

    Google Scholar 

  34. Gribov, V (1976), Quantisation of non-Abelian gauge theories, Nucl. Phys. B139, 1–19.

    Article  ADS  MathSciNet  Google Scholar 

  35. Hatcher, A (1976), Homeomorphisms of sufficiently large P 2-irreducible 3-manifolds, Topology 15, 343–347.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hawking, S, and Ellis, G (1973), The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, England.

    Book  MATH  Google Scholar 

  37. Hempel, J (1976), 3-manifolds, Annals of Mathematics Studies, Number 86, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  38. Hsiang, W (1967a), The natural metric on SO (n)/SO (n−1) is the most symmetric metric, Bull. Amer. Math. Soc. 73, 55–58.

    Article  MathSciNet  MATH  Google Scholar 

  39. Hsiang, W (1967b), On the bounds on the dimensions of the isometry groups of all possible riemannian metrics on an exotic sphere, Ann. of Math. 85, 351–358.

    Article  MathSciNet  Google Scholar 

  40. Hsiang, W (1971), On the degree of symmetry and the structure of highly symmetric manifolds, Tamkang Journal of Mathematics, Tamkang College of Arts and Sciences, Taipei, 73, 1–22.

    Google Scholar 

  41. Hu, S-T (1959), Homotopy Theory, Academic Press, New York.

    MATH  Google Scholar 

  42. Itoh, M (1991), Yamabe structures and the space of conformal structures, International Journal of Mathematics 2, 659–671.

    Article  MathSciNet  MATH  Google Scholar 

  43. Kneser, H (1929), Geschlossen Flächen in dreidimensionalen Mannigfaltigkeiten, Jber. Deutsch. Math.-Verein 38, 248–260.

    MATH  Google Scholar 

  44. Lelong-Ferrand, J (1969), Transformations conformes et quasiconformes des variétés riemanniennes; application à la démonstration d'une conjecture de A. Lichnerowicz, C. R. Acad. Sci. Paris 269, 583–586.

    MathSciNet  MATH  Google Scholar 

  45. Lelong-Ferrand, J (1971), Transformations conformes et quasiconformes des variétés riemanniennes compacts (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mem. Coll. 8°(2) 39, no. 5.

    Google Scholar 

    Google Scholar 

  46. Massey, W (1967), Algebraic Topology: An Introduction, Harcourt, Brace and World, New York.

    MATH  Google Scholar 

  47. Mess, G (1995), Homotopically trivial symmetries of 3-manifolds are toral, to appear.

    Google Scholar 

  48. Milnor, J (1956a), Construction of universal bundles: I, Ann. Math., (2)63, 272–284.

    Article  MathSciNet  Google Scholar 

  49. Milnor, J (1956b), Construction of universal bundles: II, Ann. Math., (2)63, 430–436.

    Article  MathSciNet  Google Scholar 

  50. Milnor, J (1961), A unique decomposition theorem for 3-manifolds, American Journal of Mathematics, 1–7.

    Google Scholar 

  51. Mitter, P, and Viallet, C, (1981), On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Commun. Math. Phys. 79, 455–472.

    Article  ADS  MathSciNet  Google Scholar 

  52. Moncrief, V (1976), Space-time symmetries and linearization stability of the Einstein equations. II, J. Math. Phys. 17, 1893–1902.

    Article  ADS  MathSciNet  Google Scholar 

  53. Moncrief, V (1989), Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system over Teichmüller space, J. Math. Phys. 30 (12), 2907–2914.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Moncrief, V (1990), How solvable is (2+1)-dimensional Einstein gravity?, J. Math. Phys. 31 (12), 2978–2982.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Munkres, J R (1960), Obstructions to smoothing piecewise-differentiable homeomorphisms, Ann. of Math. 72, 521–554.

    Article  MathSciNet  Google Scholar 

  56. Obata, M (1971), The conjectures on conformal transformations of Riemannian mnifolds, J. Diff. Geom. 6, 247–258.

    MathSciNet  MATH  Google Scholar 

  57. Omori, H (1970), On the group of diffeomorphisms of a compact manifold, Proc. Symp. Pure Math., Amer. Math. Soc. 15, 167–183.

    MathSciNet  ADS  Google Scholar 

  58. Orlik, P (1972), Seifert manifolds, Lecture Notes in Mathematics 291, Springer-Verlag, New York.

    MATH  Google Scholar 

  59. Orlik, P, and Raymond, F (1968), Actions of SO (2) on 3-manifolds, in Proceedings of the Conference on Transformation Groups, New Orleans, 1967 Springer-Verlag, New York.

    Google Scholar 

  60. Palais (1966), Homotopy theory of infinite dimensional manifolds, Topology, 5, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  61. Raymond, F (1968), Classification of the action of the circle on 3-manifolds, Trans. Amer. Math. Soc., 131, 51–78.

    Article  MathSciNet  MATH  Google Scholar 

  62. Satake, I (1956), On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42, 359–363.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Scott, P (1983), The geometries of 3-manifolds, Bull. London Math. Soc., 15, 401–487.

    Article  MathSciNet  MATH  Google Scholar 

  64. Singer, I (1978), Some remarks on the Gribov ambiguity, Commun. Math. Phys. 60, 7–12.

    Article  ADS  MATH  Google Scholar 

  65. Sorkin, R (1989), Classical topology and quantum phases: quantum geons, in Geometrical and Algebraic Aspects of Nonlinear Field Theory, S. De Filippo, M. Marinaro, G. Marmo, and G. Vilasi, editors, Elsevier Science Publishers, 201–218.

    Google Scholar 

  66. Spanier, E (1966), Algebraic Topology, McGraw-Hill Book Company, New York.

    MATH  Google Scholar 

  67. Thurston, W (1978), The geometry and topology of 3-manifolds, preprint, Princeton University, Princeton, New Jersey.

    Google Scholar 

  68. Thurston, W (1982), Hyperbolic geometry and 3-manifolds, in Low-dimensional topology, London Mathematical Society Lecture Note Series 48, R. Brown and T. L. Thickstun, editors, Cambridge University Press, 9–25.

    Google Scholar 

  69. Thurston, W (1982), Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6, 357–381.

    Article  MathSciNet  MATH  Google Scholar 

  70. Tromba, A (1992), Teichmüller Theory in Riemannian Geometry, Birkhäuser Verlag, Basel.

    MATH  Google Scholar 

  71. Waldhausen, F (1967), Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6, 505–517.

    Article  MathSciNet  MATH  Google Scholar 

  72. Waldhausen, F (1968), On irreducible 3-manifolds which are sufficiently large, Ann. Math. 18 56–88.

    Article  MathSciNet  Google Scholar 

  73. Wheeler, J A (1962), Geometrodynamics, Academic Press, New York.

    MATH  Google Scholar 

  74. Wheeler, J A (1964), Geometrodynamics and the issue of the final state, in Relativity, Groups and Topology, C. DeWitt and B. DeWitt, editors, Gordon and Breach Science Publishers, New York.

    Google Scholar 

  75. Wheeler, J A (1968a), Superspace and the nature of quantum geometrodynamics, in Batelle Rencontres—1967 Lectures in Mathematics and Physics, C. DeWitt and J. A. Wheeler, editors, W. A. Benjamin, Inc., New York.

    Google Scholar 

  76. Wheeler, J A (1968b), Einstein's Vision, Springer-Verlag, New York.

    Google Scholar 

  77. Wheeler, J A (1970), Superspace, in Analytic Methods in Mathematical Physics, R. Gilbert and R. Newton, editors, Gordon and Breach Science Publishers, New York.

    Google Scholar 

  78. Whitehead, J H C (1961), Manifolds with transverse fields in euclidean space, Ann. of Math. 73, 154–212.

    Article  MathSciNet  Google Scholar 

  79. Witt, D (1986), Symmetry groups of state vectors in quantum gravity, J. Math. Phys. 27 (2), 573–592.

    Article  ADS  MathSciNet  Google Scholar 

  80. Wolf, J A (1972), Spaces of Constant Curvature, second edition, Publish or Perish Press, Berkeley, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Spiros Cotsakis Gary W. Gibbons

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg New York

About this paper

Cite this paper

Fischer, A.E., Moncrief, V. (1996). The structure of quantum conformal superspace. In: Cotsakis, S., Gibbons, G.W. (eds) Global Structure and Evolution in General Relativity. Lecture Notes in Physics, vol 460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103448

Download citation

  • DOI: https://doi.org/10.1007/BFb0103448

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60751-9

  • Online ISBN: 978-3-540-49361-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics