Skip to main content

A bond model for polyoxometalate ions composed of MO6 octahedra (MOk polyhedra with k>4)

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 93))

Abstract

The literature relating to the bonding in polyoxometalate ions is reviewed. The author's opinions are presented and expanded to give a bond model for polyoxometalate ions of the early transition elements (groups V and VI) composed of MO6 octahedra (MOk polyhedra with k>4). This bond model concerns in particular the bond valence (bond lengths) and charge distribution in the polyoxometalate ions and the factors modifying them. It is based on the following commonly used concepts and principles as applied to polyoxometalate ions:

  • Lewis's octet rule, extended to the decet and dodecet rule for MV and MVI;

  • pπ-dπ M=O double bond and the coordinate bond (dative bond);

  • the resonance concept;

  • the resonance bond number (or the bond valence concept and the valence sum rule);

  • polydentate ligands and the chelate effect;

  • the larger space requirements of unshared electron pairs (cf. the VSEPR model);

  • the model of multicenter pπ-dπ multiple bonds for certain μ-oxo bridges between metal atoms;

  • Brønsted's acid/base concept and acid/base equilibria;

  • Pauling's rules for the acid/base strength of (monomeric) oxoacids/oxoanions;

  • the law of mass action (Le Chatelier's principle), and others.

The result is a set of resonance structures for polyoxometalate species in which three types of resonance can be distinguished. These, in turn, explain:

  • the cohesion of the strongly distorted tetrahedral MO4 building units in the structures by formation of MO6 octahedra and hence the enhanced stability of the polyoxometalate ions;

  • the distribution of the formal ionic charge over (nearly) all types of oxygen atoms, but preferably the terminal ones;

  • the occurrence of positively charged oxygen atoms, caused by charge separation processes;

  • the enhanced basicity of polyoxometalate ions; and further features.

A “meshing effect” defines the increase of the bond valence in inner (bridging) M−O bonds and hence the stabilization of the structures due to extension of the coordination spheres of MO4 tetrahedra. Thus, the bond lengths of the different structure types are governed by a maximization of the bond valence of the inner, bridging (or minimization of the bond valence of the outer, terminal, in contrast to frequent statements in the literature) M−O bonds. The limits of the maximization of the inner bond valences of the polyoxometalate ions are determined

  • by minimum stoichiometric requirements for corresponding resonance formulae (inevitability of charge on bridging oxygen atoms);

  • by the necessity to fulfill simultaneously the geometrical relationships of the M−O bond lengths (as defined by their interdependence in the M−O frameworks) and the valence sum rule for M and O atoms which are interrelated through the bond length-bond valence function;

  • by (for the solid state) the packing of (poly)anions, cations, and molecules of water of crystallization with respect to the requirements of their size, shape, and charge;

  • and/or by the capacity of the terminal oxygen atoms for the acceptance of unshared electron pairs in relation to that of the bridging oxygen atoms.

The principle of the stabilization of polymeric species by maximization of their inner bond valence, which is simultaneously connected with an increase of the basicity of the species, is, however, only valid for a certain range of acidification of the oxometalate solution from which or in which the species form. The overlying principle is ultimately the consumption of H+ ions in the MO w−4 /H+ systems, thus fulfilling the requirements of Le Chatelier's principle.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pope MT (1983) Heteropoly and Isopoly Oxometalates, Springer, Berlin. (a) pp 128–132, 136–141, (b) p 23, (c) p 137, (d) p 19, (e) pp 11, 21, 37, (f) pp 20–21, (g) p 72, (h) pp 48, 140–141, (i) pp 101–102, (j) pp 109–117

    Google Scholar 

  2. Pope MT (1983) 29th IUPAC Congress, Cologne, Abstracts of Papers, p 22

    Google Scholar 

  3. Pope MT, Müller A (1991) Angew Chem 103: 56–70; Angew Chem Int Ed Engl 30: 34–48

    CAS  Google Scholar 

  4. Pope MT (1992) Progr Inorg Chem 39: 181–257. (a) pp 182–186, (b) p 211, (c) pp 201–202, (d) pp 186–189, (e) p 210

    Google Scholar 

  5. Brown ID (1978) Chem Soc Rev 7: 359–376

    Article  CAS  Google Scholar 

  6. Donnay G, Donnay JDH (1973) Acta Crystallogr B 29: 1417–1425

    Article  CAS  Google Scholar 

  7. Allmann R (1975) Monatsh Chem 106: 779–793

    Article  CAS  Google Scholar 

  8. Böschen I, Buss B, Krebs B (1974) Acta Crystallogr B 30: 48–56

    Article  Google Scholar 

  9. Vivier H, Bernard J, Djomaa H (1977) Rev Chim Minerale 14: 584–604

    CAS  Google Scholar 

  10. D'Amour H, Allmann R (1972) Z Kristallogr 136: 23–47

    Article  Google Scholar 

  11. Allmann R (1971) Acta Crystallogr B 27: 1393–1404

    Article  CAS  Google Scholar 

  12. D'Amour H, Allmann R (1973) Z Kristallogr 138: 5–18

    Google Scholar 

  13. Allmann R, D'Amour H (1975) Z Kristallogr 141: 161–173

    Article  CAS  Google Scholar 

  14. Tytko KH (1977) Habilitationsschrift, University Göttingen. (a) pp 104–107 (see Ref. 15a), (b) pp 78–163, (c) pp 151–161, (d) pp 137–150, (e) p 152

    Google Scholar 

  15. Tytko KH (1987) Oxomolybdenum(VI) Species in Aqueous Solution, In: Gmelin Handbook of Inorganic Chemistry, 8th edn, Molybdenum Suppl Vol B 3a, pp 67–358. (a) pp 253–254, 319, (b) pp 344–352, (c) pp 291–295, (d) pp 306–307, (e) pp 295–297, (f) pp 298–299, (g) pp 289–290, (h) pp 316–318, (i) pp 306–308, (j) pp 283–284, 328–330, (k) pp 310–311, (l) pp 321–322, 333–334, 335–337, 348–349, (m) p 210, (n) pp 80, 88–90, (o) pp 321–322, (p) p 79, (q) pp 230–233, (r) pp 321–322, 348–349, (s) pp 273–274, (t) pp 257–258, (u) pp 289–299, (v) pp 357–358, (w) pp 201–208, (x) pp 288–289, 334–335, (y) pp 244–272, (z) pp 217–244, (aa) p 320, (bb) pp 174–181, 196–200, (cc) p 334

    Google Scholar 

  16. Evans HT Jr, Gatehouse BM, Leverett P (1975) J Chem Soc Dalton Trans 505–514

    Google Scholar 

  17. Sjöbom K, Hedman B (1973) Acta Chem Scand 27: 3673–3691

    Google Scholar 

  18. Swallow AG, Ahmed FR, Barnes WH (1966) Acta Crystallogr 21: 397–405

    Article  CAS  Google Scholar 

  19. Wilson AJ, McKee V, Penfold BR, Wilkins CJ (1984) Acta Crystallogr C 40: 2027–2030

    Article  Google Scholar 

  20. Druskovich DM, Kepert DL (1975) Aust J Chem 28: 2365–2372

    Article  CAS  Google Scholar 

  21. Linnett JW (1961) J Chem Soc 3796–3803

    Google Scholar 

  22. (a) Tytko KH, Glemser O (1971) Z Naturforsch B 26: 659–678; (b) Tytko KH (1971) Angew Chem 83: 935–936; Angew Chem Int Ed Engl 10: 860

    Google Scholar 

  23. Rocchiccioli-Deltcheff C, Thouvenot R, Fouassier M (1982) Inorg Chem 21: 30–35

    Article  CAS  Google Scholar 

  24. Mattes R, Bierbüsse H, Fuchs J (1971) Z Anorg Allg Chem 385: 230–242

    Article  CAS  Google Scholar 

  25. Fuchs J (1973) Z Naturforsch B 28: 389–404

    CAS  Google Scholar 

  26. Day VW, Klemperer WG (1985) Science 228: 533–541

    Article  CAS  Google Scholar 

  27. Filowitz M, Klemperer WG, Shum W (1978) J Am Chem Soc 100: 2580–2581

    Article  CAS  Google Scholar 

  28. Day VW, Fredrich MF, Klemperer WG, Shum W (1977) J Am Chem Soc 99: 952–953

    Article  CAS  Google Scholar 

  29. Clark CJ, Hall D (1976) Acta Crystallogr B 32: 1545–1547

    Article  Google Scholar 

  30. Boeyens JCA, McDougal GJ, Smit J van R (1976) J Solid State Chem 18: 191–199

    Article  CAS  Google Scholar 

  31. Fuchs J, Thiele A, Palm R (1982) Z Naturforsch B 37: 1418–1421

    Google Scholar 

  32. Brown GM, Noe-Spirlet MR, Busing WR, Levy HA (1977) Acta Crystallogr B 33: 1038–1046

    Article  Google Scholar 

  33. Spitsyn VI, Kazanskii LP, Torchenkova EA (1981) Soviet Sci Rev B 3: 111–196, (a) p 120, (b) pp 113–114

    CAS  Google Scholar 

  34. Tytko KH (1989) Reactions of Oxomolybdenum(VI) Species in Aqueous Solution, In: Gmelin Handbook of Inorganic Chemistry, 8th edn, Molybdenum Suppl Vol B 3b, pp 1–207. (a) pp 118–119, (b) pp 36–40, 40–62, (c) pp 36–40, 62–67, 69–73, (d) pp 115–117

    Google Scholar 

  35. Tytko KH, Glemser O (1969) Chimia 23: 494–502

    CAS  Google Scholar 

  36. Tytko KH, Glemser O (1976) Adv Inorg Chem Radiochem 19: 239–315 (a) pp 294–305, (b) p 241, (c) p 309

    CAS  Google Scholar 

  37. Tytko KH (1972) 1st Meeting Intern Soc Study Solute-Solute-Solvent Interact, Marseille, 1972, Abstr No 15, pp 1–16

    Google Scholar 

  38. Cotton FA, Wilkinson G (1982) Anorganische Chemie, 4th edn, Verlag Chemie, Weinheim. (a) pp 214–215, (b) p 167, (c) pp 238–239

    Google Scholar 

  39. Kepert DL (1972) The Early Transition Elements, Academic Press, London; pp 288–289

    Google Scholar 

  40. Kepert DL (1973) Isopolyanions and Heteropolyanions, In: Bailar JC Jr et al (eds), Comprehensive Inorganic Chemistry, vol 4, Pergamon Press, Oxford, pp 607–672; pp 623–624, 636–637

    Google Scholar 

  41. Clark GM, Morley R (1976) Chem Soc Rev 5: 269–295; pp 286–295

    Article  CAS  Google Scholar 

  42. Greenwood NN, Earnshaw A (1984) Chemistry of the Elements, Pergamon Press, Oxford. (a) pp 1262–1264, (b) pp 54–55

    Google Scholar 

  43. Tytko KH (1986) Polyhedron 5: 497–503; (1985) 5th Intern Conf Chem Uses Molybdenum, Newcastle upon Tyne, Proceedings, pp 107–108

    Article  CAS  Google Scholar 

  44. Pauling L (1973) Die Natur der chemischen Bindung, 3rd edn, Verlag Chemie, Weinheim. (a) p 7, (b) pp 307–310

    Google Scholar 

  45. Basolo F, Johnson RC (1964) Coordination Chemistry, W A Benjamin, New York; p 23

    Google Scholar 

  46. Dickersen RE, Gray HB, Haight GP (1978) Prinzipien der Chemie, Walter de Gruyter, Berlin; p 412

    Google Scholar 

  47. Riedel E (1988) Anorganische Chemie, Walter de Gruyter, Berlin; pp 95–96

    Google Scholar 

  48. Haaland A (1989) Angew Chem 101: 1017–1032; Angew Chem Int Ed Engl 28: 992

    CAS  Google Scholar 

  49. Krasochka ON, Sokolova YuA, Atovmyan LO (1975) Zh Strukt Khim 16: 696–698; J Struct Chem 16: 648–650

    CAS  Google Scholar 

  50. Gillespie RJ (1963) J Chem Educ 40: 295–301; (1970) 47: 18–23

    Article  CAS  Google Scholar 

  51. Coomber R, Griffith WP (1968) J Chem Soc A 1128–1131

    Google Scholar 

  52. Stiefel EI (1987) Molybdenum (VI), In: Wilkinson G et al (eds), Comprehensive Coordination Chemistry, vol 3, Pergamon Press, Oxford, pp 1375–1420; pp 1376–1377

    Google Scholar 

  53. Flynn CM Jr, Stucky GD (1969) Inorg Chem 8: 335–344

    Article  CAS  Google Scholar 

  54. Golubev AM, Muradyan LA, Kazanskii LP, Torchenkova EA, Simonov VI, Spitsyn VI (1977) Koord Khim 3: 920–925; Soviet J Coord Chem 3: 715–720

    CAS  Google Scholar 

  55. Knowles PF, Diebler H (1968) Trans Faraday Soc 64: 977–985

    Article  CAS  Google Scholar 

  56. Diebler H, Timms RE (1971) J Chem Soc A 273–277

    Google Scholar 

  57. Gilbert K, Kustin K (1976) J Am Chem Soc 98: 5502–5512

    Article  CAS  Google Scholar 

  58. Freedman ML (1958) J Am Chem Soc 80: 2072–2077

    Article  CAS  Google Scholar 

  59. Schwarzenbach G, Meier J (1958) J Inorg Nucl Chem 8: 302–312

    Article  CAS  Google Scholar 

  60. Kepert DL (1962) Progr Inorg Chem 4: 199–274; pp 260–263

    CAS  Google Scholar 

  61. Tytko KH, Mehmke J, Fischer S (1999) Struct Bonding 93: 129–321

    CAS  Google Scholar 

  62. Tytko KH (1983) Chem Scr 22: 201–208

    CAS  Google Scholar 

  63. Tytko KH, Schönfeld B (1975) Z Naturforsch B 30: 471–484

    Google Scholar 

  64. Tytko KH (1975) Chemiedozententagung, Düsseldorf, Referateband, p A 40

    Google Scholar 

  65. Tytko KH (1974) 16th Intern Conf Coord Chem, Dublin, Proceedings, Ref R 8

    Google Scholar 

  66. Tytko KH, Mehmke J (1983) Z Anorg Allg Chem 503: 67–86

    Article  CAS  Google Scholar 

  67. Goiffon A, Spinner B (1975) Rev Chim Minerale 12: 316–327

    CAS  Google Scholar 

  68. Goiffon A, Spinner B (1975) Bull Soc Chim France 2435–2441

    Google Scholar 

  69. Pope MT (1994) Polyoxoanions, In: King RB (ed), Encyclopedia of Inorganic Chemistry, vol 6, Wiley, Chichester, 3361–3371. (a) pp 3361–3362, (b) p 3361

    Google Scholar 

  70. Tytko KH (1976) Z Naturforsch B 31: 737–748

    Google Scholar 

  71. Kustin K, Liu ST (1973) J Am Chem Soc 95: 2487–2491

    Article  CAS  Google Scholar 

  72. Honig DS, Kustin K (1973) J Am Chem Soc 95: 5525–5528

    Article  CAS  Google Scholar 

  73. Brown ID (1992) Acta Crystallogr B 48: 553–572. (a) pp 561–562, (b) p 560

    Article  Google Scholar 

  74. Boisson MB, Gibbs GV, Zhang ZG (1988) Phys Chem Mineral 15: 409–415

    Article  Google Scholar 

  75. Brown ID (1994) Bond Length-Bond Valence Relationships in Inorganic Solids, In: Bürgi HB, Dunitz JD (eds), Structure Correlation, vol 2, VCH, Weinheim, pp 405–429. (a) pp 414–415, (b) pp 423–424

    Google Scholar 

  76. Pope MT (1972) Inorg Chem 11: 1973–1974

    Article  CAS  Google Scholar 

  77. Porai-Koshits MA, Atovmyan LO (1975) Koord Khim 1: 1271–1281; Soviet J Coord Chem 1: 1065–1074

    CAS  Google Scholar 

  78. Shustorovich EM, Porai-Koshits MA, Buslaev YuA (1975) Coord Chem Rev 17: 1–98; pp 67–81

    Article  CAS  Google Scholar 

  79. Schröder FA (1975) Acta Crystallogr B 31: 2294–2309

    Article  Google Scholar 

  80. Porth D (1991) Diplomarbeit, University Göttingen; pp 30–33

    Google Scholar 

  81. Porai-Koshits MA, Atovmyan LO (1981) Zh Neorgan Khim 26: 3171–3180; Russ J Inorg Chem 26: 1697–1703

    CAS  Google Scholar 

  82. Evans HT Jr (1971) Perspect Struct Chem 4: 1–59; pp 53–56

    CAS  Google Scholar 

  83. Cruickshank DWJ (1961) J Chem Soc 5486–5504

    Google Scholar 

  84. Cruickshank DWJ (1985) J Mol Struct 130: 177–191

    Article  CAS  Google Scholar 

  85. Lange G, Hahn H, Dehnicke K (1969) Z Naturforsch B 24: 1498–1507

    CAS  Google Scholar 

  86. Shao M, Wang L, Zhang Z, Tang Y (1984) Sci Sin Ser B (Engl Ed) 27: 137–148

    CAS  Google Scholar 

  87. Chojnacki J (1963) Bull Acad Polon Sci Ser Sci Chim 11: 365–368

    Google Scholar 

  88. Cruywagen JJ, Rohwer EFCH (1975) Inorg Chem 14: 3136–3137

    Article  CAS  Google Scholar 

  89. Sillén LG (1954) Acta Chem Scand 8: 299–317; p 304

    Google Scholar 

  90. Kepert DL (1969) Inorg Chem 8: 1556–1558

    Article  CAS  Google Scholar 

  91. Tytko KH (1973) Z Naturforsch B 28: 272–275

    CAS  Google Scholar 

  92. Wells AF (1984) Structural Inorganic Chemistry, 5th edn, Clarendon Press, Oxford; pp 27–328

    Google Scholar 

  93. Tytko KH, Schönfeld B, Buss B, Glemser O (1973) Angew Chem 81: 305–307; Angew Chem Int Ed Engl 12: 330

    Google Scholar 

  94. Tytko KH, Baethe G, Cruywagen JJ (1985) Inorg Chem 24: 3132–3136

    Article  CAS  Google Scholar 

  95. Tytko KH, Baethe G, Hirschfeld ER, Mehmke K, Stellhorn D (1983) Z Anorg Allg Chem 503: 43–66

    Article  CAS  Google Scholar 

  96. Cotton FA, Wilkinson G (1988) Advanced Inorganic Chemistry, 5th edn, Wiley, New York; pp 104–106

    Google Scholar 

  97. Nomiya K, Miwa M (1984) Polyhedron 3: 341–346

    Article  CAS  Google Scholar 

  98. Nomiya K, Miwa M (1985) Polyhedron 4: 89–95

    Article  CAS  Google Scholar 

  99. Nomiya K, Miwa M (1985) Polyhedron 4: 675–679, 1407–1412

    Article  CAS  Google Scholar 

  100. Ma L, Liu S, Zubieta J (1989) Inorg Chem 28: 175–177

    Article  CAS  Google Scholar 

  101. Krebs B, Paulat-Böschen I (1976) Acta Crystallogr B 32: 1697–1704

    Article  Google Scholar 

  102. Böschen I, Krebs B (1974) Acta Crystallogr B 30: 1795–1800

    Article  Google Scholar 

  103. Brown ID, Shannon RD (1973) Acta Crystallogr A 29: 266–282

    Article  CAS  Google Scholar 

  104. Brown ID, Wu KK (1976) Acta Crystallogr A 32: 1957–1959

    Article  Google Scholar 

  105. Donnay G, Allmann R (1970) Am Mineral 55: 1003–1015

    CAS  Google Scholar 

  106. Pyatenko YuA (1972) Kristallografiya 17: 773–779; Sov Phys—Crystallogr 17: 677–682

    CAS  Google Scholar 

  107. Trömel M (1983) Acta Crystallogr B 39: 664–669; (1984) Acta Crystallogr B 40: 338–342; (1986) Acta Crystallogr B 42: 138–141

    Article  Google Scholar 

  108. Brown ID, Altermatt D (1985) Acta Crystallogr B 41: 244–247

    Article  Google Scholar 

  109. Brown ID (1981) The Bond Valence Method: An Empirical, Approach to Chemical Structure and Bonding, In: O'Keeffe M, Navrotsky A (eds), Structure and Bonding in Crystals, vol 2, Academic Press, New York, pp 1–30

    Google Scholar 

  110. O'Keeffe M (1989) Struct Bonding 71: 161–190

    Google Scholar 

  111. Perloff, A (1970) Inorg Chem 9: 2228–2239

    Article  CAS  Google Scholar 

  112. Müller A, Penk M, Krickemeyer E, Bögge H, Walberg HJ (1988) Angew Chem 100: 1787–1789; Angew Chem Int Ed Engl 27: 1719

    Google Scholar 

  113. Tytko KH, Mehmke J, Kurad D (1999) Struct Bonding 93: 1–66

    CAS  Google Scholar 

  114. Sanderson RT (1983) Polar Covalence, Academic Press, New York. (a) pp 179–183, (b) pp 194

    Google Scholar 

  115. Downs AJ, Adams CJ (1973) Chlorine, Bromine, Iodine, Astatine, In: Bailar JC Jr et al (eds), Comprehensive Inorganic Chemistry, vol 2, Pergamon Press, Oxford, pp 1107–1594; pp 1353–1361

    Google Scholar 

  116. Brown DH, Perkins PG, Stewart JJP (1972) J Chem Soc Dalton Trans 2243–2246

    Google Scholar 

  117. Kananskii LP, Spitsyn VI (1976) Dokl Akad Nauk SSSR 227: 140–143; Dokl Phys Chem Proc Acad Sci USSR 226/231: 225–227

    Google Scholar 

  118. Hawthorne FC (1992) Z Kristallogr 201: 183–206

    Article  CAS  Google Scholar 

  119. Waugh JLT, Shoemaker DP, Pauling L (1954) Acta Crystallogr 7: 438–441

    Article  CAS  Google Scholar 

  120. Baker LCW, Lebioda L, Grochowski J, Mukherjee AG (1980) J Am Chem Soc 102: 3274–3276

    Article  CAS  Google Scholar 

  121. Tytko KH, Cordis V, Mehmke K, Hirschfeld ER (1985) U.S.-Japan Seminar on the Catalytic Activity of Polyoxoanions, Shimoda, Abstracts, pp 35–39

    Google Scholar 

  122. Mehmke K (1988) Dissertation, University Göttingen. (a) pp 110, (b) pp 110, 113–115, 151–154, 159

    Google Scholar 

  123. Howarth OW, Pettersson L, Andersson I (1989) J Chem Soc Dalton Trans 1915–1923

    Google Scholar 

  124. Stiefel EI (1977) Progr Inorg Chem 22: 1–223; pp 34–35

    CAS  Google Scholar 

  125. Cotton FA, Wing RM (1965) Inorg Chem 4: 867–873

    Article  CAS  Google Scholar 

  126. Krebs B (1972) Acta Crystallogr B 28: 2222–2231

    Article  CAS  Google Scholar 

  127. Fuchs J, Palm R, Hartl H (1996) Angew Chem 108: 2820–2822; Angew Chem Int Ed Engl 35: 2651–2653

    Google Scholar 

  128. Hüllen A (1964) Naturwissenschaften 51: 508; Angew Chem 76: 588

    Article  Google Scholar 

  129. Jahr KF, Fuchs J (1966) Angew Chem 78: 725–735; Angew Chem Int Ed Engl 5: 689–699

    Google Scholar 

  130. Tytko KH (1985) Molybdate Hydrates with Alkali Metals and Ammonium and with Alkaline Earth Metals, In: Gmelin Handbook of Inorganic Chemistry, 8th edn, Molybdenum Suppl Vol B 4, pp 1–213. (a) p 37, (b) pp 30–32, 37

    Google Scholar 

  131. Tisley DG, Walton RA (1973) J Mol Struct 17: 401–409

    Article  CAS  Google Scholar 

  132. Howarth OW, Jarrold MJ (1978) J Chem Soc Dalton Trans 503–506

    Google Scholar 

  133. Griffith WP, Lesniak PJB (1969) J Chem Soc A 1066–1071

    Google Scholar 

  134. Corigliano F, Di Pasquale S (1975) Inorg Chem Acta 12: 99–101

    Article  Google Scholar 

  135. Kazanskii LP, Spitsyn VI (1975) Dokl Akad Nauk SSSR 223: 381–384; Dokl Phys Chem Proc Acad Sci USSR 220/225: 721–723

    CAS  Google Scholar 

  136. Klemperer WG, Shum WJ (1977) J Am Chem Soc 99: 3544–3545

    Article  CAS  Google Scholar 

  137. Klemperer WG, Shum WJ (1978) J Am Chem Soc 100: 4891–4893

    Article  CAS  Google Scholar 

  138. Day VW, Klemperer WG, Maltbie DJ (1987) J Am Chem Soc 109: 2991–3002

    Article  CAS  Google Scholar 

  139. Kazanskii LP, Saprykin AS, Golubev AM, Spitsyn VI (1977) Dokl Akad Nauk SSSR 233: 405–408; Dokl Phys Chem Proc Acad Sci USSR 232/237: 282–284

    CAS  Google Scholar 

  140. Fuchs J, Knöpnadel I (1982) Z Kristallogr 158: 165–179

    CAS  Google Scholar 

  141. Freeman MA, Schultz FA, Reilley CN (1982) Inorg Chem 21: 567–576

    Article  CAS  Google Scholar 

  142. Klemperer WG (1990) Inorg Synth 27: 71–135; pp 71–74

    Article  CAS  Google Scholar 

  143. Böschen I, Buss B, Krebs B, Glemser O (1973) Angew Chem 85: 409; Angew Chem Int Ed Engl 12: 409

    Google Scholar 

  144. Enjalbert R, Galy J (1986) Acta Crystallogr C 42: 1467–1469

    Article  Google Scholar 

  145. Baur WH (1972) Am Mineral 57: 709–731

    CAS  Google Scholar 

  146. Björnberg A (1980) Dissertation, University Umeå; pp 41–45 (see also Reference 1, p 19)

    Google Scholar 

  147. Moore PB (1974) Neues Jahrb Mineral Abhandl 120: 205–227; pp 220–221

    CAS  Google Scholar 

  148. Henry M, Jolivet JP, Livage J (1992) Struct Bonding 77: 153–206; pp 163–165

    Article  CAS  Google Scholar 

  149. D'Amour H, Allmann R (1976) Z Kristallogr 143: 1–13

    Google Scholar 

  150. D'Amour H (1976) Acta Crystallogr B 32: 729–740

    Article  Google Scholar 

  151. Cordis V, Tytko KH, Glemser O (1975) Z Naturforsch B 30: 834–841

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Allen J. Bard Ian G. Dance Peter Day FRS James A. Ibers Toyohi Kunitake Thomas J. Meyer D. Michael P. Mingos Herbert W. Roesky Jean-Pierre Sauvage Arndt Simon Fred Wudl

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tytko, K.H. (1999). A bond model for polyoxometalate ions composed of MO6 octahedra (MOk polyhedra with k>4). In: Bard, A.J., et al. Bonding and Charge Distribution in Polyoxometalates: A Bond Valence Approach. Structure and Bonding, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103380

Download citation

  • DOI: https://doi.org/10.1007/BFb0103380

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64934-2

  • Online ISBN: 978-3-540-68306-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics