Skip to main content

Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis

Application to mechanistical investigations, and tailoring PDC for the use in organic synthesis

  • Chapter
  • First Online:
New Enzymes for Organic Synthesis

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((4143,volume 58))

Abstract

Pyruvate decarboxylases (E.C. 4.1.1.1) from various organisms have been studied for many years, mainly with respect to the mechanism of the non-oxidative decarboxylation reaction. Although the C−C-bond-forming properties of these enzymes are known and have been applied for many years in biotransformations for the synthesis of chiral α-hydroxy ketones, only little is known about the factors influencing the carboligase side-reaction.

The present review surveys recent efforts in the study of site-directed mutagenesis on PDCs, which are discussed against a background of the structural and kinetical investigations. It also includes recent studies on tailoring the PDCs of Zymomonas mobilis for the syntheses of (R)-phenylacetyl carbinol (PAC), a pre-step in the synthesis of l-ephedrine, by protein design techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ADH:

alcohol dehydrogenase

CD:

circular dichroism

3D:

three-dimensional

HEThDP:

2-(hydroxyethyl)thiamine diphosphate

Mes:

4-morpholineethanesulfonsäure

nh :

Hill-coefficient

PAC:

phenylacetyl carbinol

PDC:

pyruvate decarboxylase

PDCS.c. :

PDC from Saccharomyces cerevisiae

PDCS.u. :

PDC from Saccharomyces uvarum

PDCZZ.m. :

PDC from Zymomonas mobilis

S0.5 :

substrate concentration necessary for half-maximal velocity

ThDP:

thiamine diphosphate

v/S:

velocity vs substrate concentration

Vmax :

maximal velocity

wt:

wild-type

References

  1. Neuberg C, Karczag L (1911) Biochem Zeitschr 36: 68

    Google Scholar 

  2. Neuberg C, Karczag L (1911) Biochem Zeitschr 36: 76

    Google Scholar 

  3. Neuberg C, Rosenthal P (1913) Biochem Zeitschr 51: 128

    CAS  Google Scholar 

  4. Neuberg C, Hirsch J (1921) Biochem Zeitschr 115: 282

    CAS  Google Scholar 

  5. Neuberg C, Ohle H (1922) Biochem Zeitschr 127: 327

    CAS  Google Scholar 

  6. Hildebrandt G, Klavehn W (1932) German Patent No. 548 459.

    Google Scholar 

  7. Hildebrandt G, Klavehn W (1934) U.S. Patent 1,956,950.

    Google Scholar 

  8. Pflanz H, Heise D (1957) German Patent No. 13683.

    Google Scholar 

  9. Selly RJ, Heefner DL, Hageman RV, Sullivan SA (1994) U.S. Patent, No. 5,312,742.

    Google Scholar 

  10. Nikolova P, Ward OP (1991) Biotechnol Bioeng 20: 493

    Google Scholar 

  11. Nikolova P, Ward OP (1994) Biotechnol Lett 16: 7

    CAS  Google Scholar 

  12. Nikolova P, Long A, Ward OP (1994) Biotechnol Techniques 5: 31

    Google Scholar 

  13. Long A, Ward OP (1989) J Ind Microbiol 4: 49

    CAS  Google Scholar 

  14. Long A, Ward OP (1989) Biotechnol Bioeng 34: 933

    CAS  Google Scholar 

  15. Mahmoud WM, El-Sayed ABMM, Coughlin RW (1990) Biotechnol Bioeng 36: 256

    CAS  Google Scholar 

  16. Mahmoud WM, El-Sayed AHMM, Coughlin RW (1990) Biotechnol Bioeng 36: 47

    CAS  Google Scholar 

  17. Mahmoud WM, El-Sayed AHMM, Coughlin RW (1990) Biotechnol Bioeng 36: 55

    CAS  Google Scholar 

  18. Agarwal SC, Basu SK, Vora VC, Mason JR, Pirt SJ (1987) Biotechnol Bioeng 29: 783

    CAS  Google Scholar 

  19. Chow YS, Shin HS, Adesina AA, Rogers PL (1995) Biotechnol Lett 17: 1201

    CAS  Google Scholar 

  20. Liew MKH, Fane AG, Rogers PL (1995) Biotechnol Bioeng 48: 108

    CAS  Google Scholar 

  21. Shin HS, Rogers PL (1995) Appl Microbiol Biotechnol 44: 7

    CAS  Google Scholar 

  22. Shin HS, Rogers PL (1996) Biotechnol Bioeng 49: 429

    CAS  Google Scholar 

  23. Shin HS, Rogers PL (1996) Biotechnol Bioeng 49: 52

    CAS  Google Scholar 

  24. Dirscherl W (1931) Hoppe-Seyler's Z Physiol Chem 201: 47

    CAS  Google Scholar 

  25. Langenbeck W, Wrede H, Schlockermann W (1934) Hoppe-Seyler's Z Physiol Chem 227: 263

    CAS  Google Scholar 

  26. Singer TP, Pensky J (1951) Arch Biochem Biophys 31: 457

    CAS  Google Scholar 

  27. Singer TP, Pensky J (1952) Arch Biochem Biophys Acta 9: 316

    CAS  Google Scholar 

  28. Juni E (1952) J Biol Chem 195: 727

    CAS  Google Scholar 

  29. Juni E (1961) J Biol Chem 236: 2302

    CAS  Google Scholar 

  30. Lohmann K, Schuster P (1931) Naturwissenschaften 19: 18

    Google Scholar 

  31. Auhagen E, Hartmann M, von Laue M, Rosenheim A, Volmer M (1931) Naturwissenschaften 19: 916

    CAS  Google Scholar 

  32. Lohmann K, Schuster P (1937) Biochem Zeitschr 294: 188

    CAS  Google Scholar 

  33. Green DE, Herbert D, Subrahmanyan V (1941) J Biol Chem 138: 327

    CAS  Google Scholar 

  34. Flatau S, Fischer G, Kleinpeter E, Schellenberger A (1988) FEBS Lett 233: 379

    CAS  Google Scholar 

  35. Dyda F, Furey W, Swaminathan S, Sax M, Farrenkopf BC, Jordan F (1993) Biochemistry 32: 6165

    CAS  Google Scholar 

  36. Breslow R (1958) J Am Chem Soc 80: 3719

    CAS  Google Scholar 

  37. Breslow R, McNelis E (1959) J Am Chem Soc 81: 3080

    CAS  Google Scholar 

  38. Krampitz LO, Greull G, Miller CS, Bicking JB, Skeggs HR, Sprangue JM (1958) J Am Chem Soc 80: 5893

    CAS  Google Scholar 

  39. Holzer H, da Fonzea-Wollheim F, Kohlhaw G, Woenckhaus CW (1961) Ann NY Acad Sci 98: 453

    Google Scholar 

  40. Schellenberger A (1967) Angew Chem 79: 1050

    Google Scholar 

  41. Schellenberger A, Müller V, Winter K, Hübner G (1966) Hoppe-Seyler's Z Physiol Chem 344: 244

    CAS  Google Scholar 

  42. Wittorf JH, Gubler CJ (1970) Eur J Biochem 14: 53

    CAS  Google Scholar 

  43. Ullrich J, Donner I (1970) Hoppe-Seyler's Z Physiol Chem 351: 1030

    CAS  Google Scholar 

  44. Ullrich J, Donner I (1970) Hoppe-Seyler's Z Physiol Chem 351: 1026

    CAS  Google Scholar 

  45. Kuo DJ, Jordan F (1983) Biochemistry 22: 3735

    CAS  Google Scholar 

  46. Kuo DJ, Jordan F (1983) J Biol Chem 225: 13415

    Google Scholar 

  47. Hübner G, Atanassova M, Schellenberger A (1986) Biomed Biochem Acta 45: 823

    Google Scholar 

  48. Kluger R (1987) Chem Rev 87: 863

    CAS  Google Scholar 

  49. Schellenberger A (1990) Chem Ber 123: 1489

    CAS  Google Scholar 

  50. Schellenberger A, Neef H, Golbig R, Hübner G, König S (1990) Mechanistic aspects of thiamine pyrophosphate enzymes via site-directed substitutions of the coenzyme structure. In: Bisswanger H, Ullrich H (eds) Biochemistry and physiology of thiamin diphosphate enzymes. VCH, Weinheim, p 3

    Google Scholar 

  51. Arjunan P, Umland T, Dyda F, Swaminathan S, Furey W, Sax M, Farrenkopf B, Gao Y, Zhang D, Jordan F (1996) J Mol Biol 256: 590

    CAS  Google Scholar 

  52. Alvarez FJ, Ermer J, Hübner G, Schellenberger A, Schowen RL (1991) J Am Chem Soc 113: 8402

    CAS  Google Scholar 

  53. Schellenberger A, Hübner G (1967) Hoppe-Seyler's Z Physiol Chem 348: 491

    CAS  Google Scholar 

  54. Crane EJ, Vaccaro JA, Washabaugh MW (1993) J Am Chem Soc 115: 8912

    CAS  Google Scholar 

  55. Stivers JT, Washabaugh MW (1993) Biochemistry 32: 13472

    CAS  Google Scholar 

  56. Harris TK, Washabaugh MW (1995) Biochemistry 34: 13994

    CAS  Google Scholar 

  57. Harris TK, Washabaugh MW (1995) Biochemistry 34: 14001

    CAS  Google Scholar 

  58. Lindqvist Y, Schneider G (1993) Curr Opin Struct Biol 3: 896

    CAS  Google Scholar 

  59. Muller YA, Lindquist Y, Furey W, Schulz GE, Jordan F, Schneider G (1993) Structure 1: 95

    CAS  Google Scholar 

  60. Lobell M, Crout DHG (1996) J Am Chem Soc 118: 1867

    CAS  Google Scholar 

  61. Kern D, Kern G, Neef H, Killenberg-Jabs M, Tittmann K, Hübner G (1996) How thiamin is activated in enzymes (Bisswanger H, Schellenberger A, eds) Biochemistry and physiology of thiamin diphosphate enzymes, A. & C. Intenmann, Wissenschaftlicher Verlag, Prien, p 25

    Google Scholar 

  62. Ermer J, Schellenberger A, Hübner G (1992) FEBS Lett 299: 163

    CAS  Google Scholar 

  63. Chen GC, Jordan F (1984) Biochemistry 23: 3582

    Google Scholar 

  64. Zeng X, Chung A, Haran M, Jordan F (1991) J Am Chem Soc 113: 5842

    CAS  Google Scholar 

  65. Menon-Rudolph S, Nishikawa S, Zheng X, Jordan F (1992) J Am Chem Soc 114: 10110

    CAS  Google Scholar 

  66. Lindqvist Y, Schneider, Ermler U, Sundström M (1992) EMBO J 11: 1: 2373

    CAS  Google Scholar 

  67. Muller YA, Schulz GE (1993) Science 259: 965

    CAS  Google Scholar 

  68. Muller YA, Schumacher G, Rudolph R, Schulz GE (1994) J Mol Biol 237: 315

    CAS  Google Scholar 

  69. Kubowitz F, Lüttgens W (1941) Biochem Zeitschr 307: 170

    CAS  Google Scholar 

  70. Morey AV, Juni E (1968) J Biol Chem 243: 3009

    CAS  Google Scholar 

  71. Langston-Unkefer PJ, Lee TC (1985) Plant Physiol 79: 436

    CAS  Google Scholar 

  72. Diefenbach RJ, Duggleby RG (1991) Biochem J 276: 439

    CAS  Google Scholar 

  73. Lautens JC, Kluger R (1992) J Org Chem 57: 6410

    CAS  Google Scholar 

  74. Vaccaro JA, Crane EJ, Harris TH, Washabaugh MW (1995) Biochemistry 34: 12636

    CAS  Google Scholar 

  75. Juni E, Heym GA (1968) Arch Biochem Biophys 127: 79

    CAS  Google Scholar 

  76. Pohl M, Mesch K, Rodenbrock A, Kula MR (1995) Biotechnol Appl Biochem 22: 95

    CAS  Google Scholar 

  77. Eppendorfer S, König S, Golbik R, Neef H, Lehle K, Jaenicke R, Schellenberger A, Hübner G (1993) Hoppe-Seyler's Z Physiol Chem 374: 1129

    CAS  Google Scholar 

  78. Gounaris AD, Turkenkopf I, Buckwald S, Young A (1971) J Biol Chem 246: 1302

    CAS  Google Scholar 

  79. Gounaris AD, Turkenkopf I, Civerchia LL, Greenlie J (1975) Biochim Biophys Acta 405: 492

    CAS  Google Scholar 

  80. König S, Svergun D, Koch MHJ, Hübner G, Schellenberger A (1992) Biochemistry 31: 8726

    Google Scholar 

  81. König S, Svergun D, Koch MHJ (1996) Comparison of subunit interactions of pyruvate decarboxylase from different organisms by small-angle solution scattering. In: Bisswanger H, Schellenberger A (eds) Biochemistry and physiology of thiamin diphosphate enzymes. A. & C. Intemann, Wissenschaftlicher Verlag, Prien, p 160

    Google Scholar 

  82. Pohl M, Grötzinger J, Wollmer A, Kula MR (1994) Eur J Biochem 224: 651

    CAS  Google Scholar 

  83. Hopmann RFW (1980) Eur J Biochem 110: 311

    CAS  Google Scholar 

  84. Kilenberg-Jabs M, Hübner G, Kern G (1996) Folding and unfolding of homotetrameric pyruvate decarboxylase from S. cerevisiae. In: Bisswanger H, Schellenberger A (eds) Biochemistry and Physiology of thiamin diphosphate enzymes. A. & C. Intermann, Wissenschaftlicher Verlag, Prien, p 195

    Google Scholar 

  85. Perata P, Alpi A (1993) Plant Science 93: 1

    CAS  Google Scholar 

  86. Gancedo C, Serrano R (1989) Energy-yielding metabolism. In: Rose AH, Harrisin JS (eds) The yeast, vol. 3. Academic Press, New York, p 205

    Google Scholar 

  87. Kellermann E, Seeboth PG, Hollenberg CP (1986) Nucleic Acids Res 14: 8963

    CAS  Google Scholar 

  88. Hohmann S (1991) J Bacteriol 173: 7963

    CAS  Google Scholar 

  89. Hohmann S (1991) Curr Genet 20: 373

    CAS  Google Scholar 

  90. Hohmann S, Cederberg H (1990) Eur J Biochem 188: 615

    CAS  Google Scholar 

  91. Holloway P, Subden RE (1994), Yeast 10: 1581

    CAS  Google Scholar 

  92. Holloway P, Subden RE (1993) Curr Genet 24: 274

    CAS  Google Scholar 

  93. Bianachi MM, Tizzani L, Destruelle M, Frontali L, Wesolowski-Louvel M (1996) Molec Microbiol 19: 27

    Google Scholar 

  94. Alvarez ME, Rosa AL, Temperoni ED, Wolstenholme A, Panzetta G, Patrita L, Maccioni HJF (1993) Gene 130: 253

    CAS  Google Scholar 

  95. Sanchis V, Vinas I, Roberts IN, Jeenes DJ, Watson AJ, Archer DB (1994) FEMS Microbiol Lett 117: 207

    CAS  Google Scholar 

  96. Kelley PM (1989) Plant Molec Biol 13: 213

    CAS  Google Scholar 

  97. Kelley PM, Godfrey K, Lal SK, Alleman M (1991) Plant Molec Biol 17: 1259

    CAS  Google Scholar 

  98. Hossain MA, Hug E, Hodges TK (1994) Plant Physiol 106: 799

    CAS  Google Scholar 

  99. Foster A, Chase T (1995) FASEB J 9: A1292

    Google Scholar 

  100. Foster A, Chase T (1995) Plant Physiol 108 (2.Supp): 75

    Google Scholar 

  101. Mücke U, Wohlfarth T, Fiedler U, Bäumlein H, Rücknagel KP, König S (1996) Eur J Biochem 237: 373

    Google Scholar 

  102. Bucher M, Brander K, Sbicego S, Mandel T, Kühlemeyer C (1995) Plant Molec Biol 28: 739

    CAS  Google Scholar 

  103. Neale AD, Scopes RK, Wettenhall REH, Hoogenraad NJ (1987) Nucleic Acids Res 15: 1753

    CAS  Google Scholar 

  104. Conway T, Osman YA, Konnan JI, Hoffmann EM, Ingram LO (1987) J Bacteriol 169: 949

    CAS  Google Scholar 

  105. Reynen M, Sahm H (1988) J Bacteriol 170: 3310

    CAS  Google Scholar 

  106. Miczka G, Vernau J, Kula MR, Hofman B, Schomberg D (1992) Biotechnol Appl Biochem 15: 192

    CAS  Google Scholar 

  107. Alvarez FJ, Ermer J, Hübner G, Schellenberger A, Schowen RL (1995) J Am Chem Soc 117: 1678

    CAS  Google Scholar 

  108. Farrenkopf BC, Jordan F (1992) Protein Express Purif 3:101

    CAS  Google Scholar 

  109. Hübner G, König S, Schellenberger A, Koch MHJ (1990) FEBS Lett 266: 17

    Google Scholar 

  110. Hübner G, König S, Schnackerz KD (1992) FEBS Lett 314: 101

    Google Scholar 

  111. Jordan F, Dikdan G (1995) FASEB J 9: A1285

    Google Scholar 

  112. König S, Hübner G, Schellenberger A (1990) Biomed Biochem Acta 6: 465

    Google Scholar 

  113. König S, Svergun D, Koch MHJ, Hübner G, Schellenberger A (1993) Eur Biophys J 22: 185

    Google Scholar 

  114. Kuo DJ, Dikdan G, Jordan F (1986) J Biol Chem 261: 3316

    CAS  Google Scholar 

  115. Lehmann H, Fischer G, Hübner G, Kohnert KD, Schellenberger A (1973) Eur J Biochem 32: 83

    CAS  Google Scholar 

  116. Suomalainen H, Linnehalme T (1966) Arch Biochem Biophys 114: 502

    CAS  Google Scholar 

  117. Sun S, Duggleby RG, Schowen RI (1995) J Am Chem Soc 117: 7317

    CAS  Google Scholar 

  118. Bringer-Meyer S, Sahm H (1988) Biocatalysis 1: 321

    CAS  Google Scholar 

  119. Neale AD, Scopes RK, Wettenhall REH, Hoogenraad NJ (1987) J Bacteriol 169: 1024

    CAS  Google Scholar 

  120. Crout DHG, Littlechild J, Morrey SM (1986) J Chem Soc Perkin Trans I: 105

    Google Scholar 

  121. Kluger R, Gish G, Kauffman G (1984) J Biol Chem 259: 8960

    CAS  Google Scholar 

  122. Ullrich J (1982) Ann N Y Acad Sci 378: 287

    CAS  Google Scholar 

  123. Zehender H, Ullrich J (1985) FEBS Lett 180: 51

    CAS  Google Scholar 

  124. Zehender H, Trescher D, Ullrich J (1987) Eur J Biochem 167: 149

    CAS  Google Scholar 

  125. Mücke U, König S, Hübner G (1995) Biol Chem Hoppe-Seyler 376: 111

    Google Scholar 

  126. Lebova S (1990) Characterization of pyruvate decarboxylases isolated from germinating seeds. In: Bisswanger H, Ullrich J (eds) Biochemistry and physiology of thiamin diphosphate enzymes, VCH, Weinheim, p 133

    Google Scholar 

  127. Lee CL, Langston-Unkefer PJ (1979) Plant Physiol 79: 242

    Google Scholar 

  128. Rivoal J, Ricard B, Pradet A (1990) Eur J Biochem 194: 791

    CAS  Google Scholar 

  129. Oba K, Uritani I (1975) J Biochem (Tokyo) 77: 1205

    CAS  Google Scholar 

  130. Oba K, Uritani I (1982) Pyruvate decarboxylase from sweet potato roots. In: Wood WA (ed) Methods in Enzymology, vol. 90. Academic Press, New York, p 528

    Google Scholar 

  131. Lowe SE, Zeikus JG (1992) J Gen Microbiol 138: 803

    CAS  Google Scholar 

  132. Bioteux A, Hess B (1970) FEBS Lett 9: 293

    Google Scholar 

  133. Gish G, Smyth T, Kluger R (1988) J Am Chem Soc 110: 6230

    CAS  Google Scholar 

  134. Schellenberger A, Hübner G (1970) Z Chem 10: 436

    Google Scholar 

  135. Hübner G, Weidhase R, Schellenberger A (1978) Eur J Biochem 92: 175

    Google Scholar 

  136. Hübner G, König S, Schellenberger A (1988) Biomed Biochem Acta 1: 9

    Google Scholar 

  137. Zeng X, Farrenkopf BC, Hohmann S, Dyda F, Furey W, Jordan F (1993) Biochemistry 32: 2704

    CAS  Google Scholar 

  138. Baburina I, Gao Y, Hu Z, Jordan F, Hohmann S, Furey W (1994) Biochemistry 33: 5630

    CAS  Google Scholar 

  139. Schaaf I, Green JBA, Gozalbo D, Hohmann S (1989) Curr Genet 15: 75

    Google Scholar 

  140. Seeboth PG, Bohnsack K, Hollenberg CP (1990) J Bacteriol 172: 678

    CAS  Google Scholar 

  141. Candy JM, Duggleby RG, Mattick JS (1991) J Gen Microbiol 137: 2811

    CAS  Google Scholar 

  142. Ullrich J, Leuble (1986) Hoppe-Seyler's Z Physiol Chem 367 Suppl: 363

    Google Scholar 

  143. Abraham WR, Stumpf B (1987) Z Naturforsch C Biosci 42c: 559

    Google Scholar 

  144. Cardillo R, Servi St, Tinti C (1991) Appl Microbiol Biotechnol 36: 300

    CAS  Google Scholar 

  145. Ebert C, Gardossi T, Gianferrara T, Linda P, Morandini C (1994) Biocatalysis 10: 15

    CAS  Google Scholar 

  146. Fuganti C, Grasselli P, Poli G, Servi S, Zorella A (1988) J Chem Soc Chem Comm: 1619

    Google Scholar 

  147. Fuganti C, Grasselli P, Servi St, Spreafico F, Zirotti C (1984) J Org Chem 49: 4087

    CAS  Google Scholar 

  148. Fuganti C, Grasselli P, Spreafico F, Zirotti C (1984) J Org Chem 49: 543

    CAS  Google Scholar 

  149. Fuganti C, Grasselli P, Poli G, Servi S, Höberg HE (1988) J Chem Soc Perkin Trans I: 3061

    Google Scholar 

  150. Ohta H, Ozaki K, Konishi J, Tsuchihashi G (1986) Agric Biol Chem 50: 1261

    CAS  Google Scholar 

  151. Csuk R, Glänzer BI (1991) Chem Rev 91: 49

    CAS  Google Scholar 

  152. Singer TP, Pensky J (1952) J Biol Chem 196: 375

    CAS  Google Scholar 

  153. Bornemann S, Crout DHG, Dalton H, Hutchinson DW, Dean G, Thomson N, Turner MM (1993) J Chem Soc Perkin Trans I: 309

    Google Scholar 

  154. Bornemann S, Crout DHG, Dalton H, Kren V, Lobell M, Dean G, Thomson N, Turner MM (1996) J Chem Soc Perkin Trans I: 425

    Google Scholar 

  155. Crout DHG, Dalton H, Hutchinson DW, Miyagoshi M (1991) J Chem Soc Perkin Trans I: 1329

    Google Scholar 

  156. Crout DHG, Davies S, Heath RJ, Miles CO, Rathbone DR, Swoboda BEP (1994) Biocatalysis 9: 1

    CAS  Google Scholar 

  157. Kren V, Crout DHG, Dalton H, Hutchinson DW, König W, Turner MM, Dean G, Thomson N (1993) J Chem Soc Chem Commun: 341

    Google Scholar 

  158. Schellenberger A, Hübner G, Atanassowa M, Sieber M, König S (1986) Wiss Z Univ Halle 3: 37

    Google Scholar 

  159. Thomas G, Diefenbach RJ, Duggleby RG (1990) Biochem J 266: 305

    CAS  Google Scholar 

  160. Uhlemann H, Schellenberger A (1976) FEBS Lett 63: 37

    CAS  Google Scholar 

  161. Long A, James P, Ward OP (1989) Biotechnol Bioeng 33: 657

    CAS  Google Scholar 

  162. Singer TP (1952) Biochim Biophys Acta 8: 108

    CAS  Google Scholar 

  163. Bruhn H, Pohl M, Grötzinger J, Kula MR (1995) Eur J Biochem 234: 650

    CAS  Google Scholar 

  164. Bruhn H, Pohl M, Mesch K, Kula MR (1996) Deutsche Patentanmeldung 195 23 269. 0–41

    Google Scholar 

  165. Fagain CO (1995) Biochim Biophys Acta 1252: 1

    Google Scholar 

  166. Hahn U, Heinemann U (1994) Structure determination, modeling and site-directed mutagenesis. In: Wrede P, Schneider G (eds) Concepts in protein engineering and design. De Gruyter, Berlin, p 109

    Google Scholar 

  167. Schomburg D (1994) Rational protein design of proteins with new properties. In: Wrede P, Schneider G (eds) Concepts in protein engineering and design. De Gruyter, Berlin, p 169

    Google Scholar 

  168. Fersht AR, Winter G (1986) TIBS 17: 292

    Google Scholar 

  169. Gaddis TJ, Oxender DL (1994) An Introduction of protein engineering. In: Wrede P, Schneider G (eds) Concepts in protein engineering and design. De Gruyter, Berlin, p 1

    Google Scholar 

  170. Pohl M, Mesch K, Bruhn H, Goetz G, Iding H, Kula MR (1996) Site-directed mutagenesis studies on the pyruvate decarboxylase from Zymomonas mobilis In: (Bisswanger H, Schellenberger A, eds) Biochemistry and physiology of thiamin diphosphate enzymes, A. & C. Intemann, Wissenschaftlicher Verlag, Prien, p 160

    Google Scholar 

  171. Candy JM, Koga J, Nixon PF, Duggleby RG (1996) Biochem J 315: 745

    CAS  Google Scholar 

  172. Jordan F, Barburina I, Gao Y, Kahyaoglu A, Nemeria N, Volkov A, Yi JZ, Zhang D, Machado R, Guest JR, Furey W, Hohmann S (1996) New insights to the regulation of thiamin diphosphate decarboxylases by substrate and ThDP Mg(II) In: (Bisswanger H, Schellenberger A, eds) Biochemistry and physiology of thiamin diphosphate enzymes. A.&C. Intemann, Wissenschaftlicher Verlag, Prien, p 53

    Google Scholar 

  173. Hawkins CF, Borges A, Perham RN (1989) FEBS Lett 255: 77

    CAS  Google Scholar 

  174. Candy JM, Duggleby RG (1994) Biochem J 330: 7

    Google Scholar 

  175. Candy JM, Nixon PF, England R, Schenk G, Koga J, Duggleby RG (1996) Site-directed mutagenesis of E50, F496 and His113 in Zymomonas mobilis pyruvate decarboxylase In: (Bisswanger H, Schellenberger A, eds) Biochemistry and physiology of thiamin diphosphate enzymes, A. & C. Intemann, Wissenschaftlicher Verlag, Prien, p 82

    Google Scholar 

  176. Diefenbach RJ, Candy JM, Mattick JS, Duggleby RG (1992) FEBS Lett 296: 95

    CAS  Google Scholar 

  177. Becvarova H, Hanc O (1963) Folia Microbiol 8: 42

    CAS  Google Scholar 

  178. Voets JP, Vandamme EJ, Vlerick C (1973) Z Allg Mikrobiol 13: 355

    CAS  Google Scholar 

  179. Gröger G, Schmauder HP, Mothes K (1966) Z Allg Mikrobiol 6: 275

    Google Scholar 

  180. Biselli M, Kragl U, Wandrey C (1995) Reaction engineering for enzyme catalyzed biotransformations. In: Drauz K, Waldheim H (eds) Enzymes in organic synthesis. VCH, Weinheim, p 89

    Google Scholar 

  181. Nicholls, A (1992) Dept. of Biochemistry and Molecular Biophysics, Columbia University, New York

    Google Scholar 

  182. Barburina I, Moore DJ, Volkov A, Kahyaoglu A, Jordon F, Mendelsohn R (1996) Biochemistry 35: 10249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Maria-Regina Kula on the occasion of her 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pohl, M. (1997). Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. In: New Enzymes for Organic Synthesis. Advances in Biochemical Engineering/Biotechnology, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103301

Download citation

  • DOI: https://doi.org/10.1007/BFb0103301

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61869-0

  • Online ISBN: 978-3-540-70728-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics