Advertisement

The cancellation problem for projective modules and related topics

  • A. A. Suslin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 734)

Keywords

Steklov Institute Polynomial Ring Projective Module Regular Ring Stable Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bass, K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 5–60.Google Scholar
  2. 2.
    H Bass, Some problems in "classical" algebraic K-theory, pp. 3–73 of Lecture Notes in Math. 342, Springer-Verlag, Berlin and New York, 1973.zbMATHGoogle Scholar
  3. 3.
    H. Bass, J. Milnor and J.-P. Serre, Solution of the congruence subgroup problem for SLn (n≥3) and Sp2n (n≥2), Inst. Hautes Études Sci. Publ. Math. No. 33 (1967), 59–137 Corrections, ibid., No. 44 (1974), 241–244.Google Scholar
  4. 4.
    H. Bass and J. Tate, The Milnor ring of a global field, pp. 349–446 of Lecture Notes in Math. 342, Springer-Verlag, Berlin and New York, 1973zbMATHGoogle Scholar
  5. 5.
    R. Elman and T.-Y. Lam, Pfister forms and K-theory of fields, J. Algebra 23 (1972), 181–213.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M.I. Krusemeyer, Fundamental groups, algebraic K-theory, and a problem of Abhyankar, Invent. Math. 19 (1973), 15–47.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    T.-Y. Lam, Serre's Conjecture, Lecture Notes in Math. 635, Springer-Verlag, Berlin and New York, 1978.CrossRefzbMATHGoogle Scholar
  8. 8.
    H. Lindel and W. Lütkebohmert, Projektive Moduln über polynomialen Erweiterungen von Potenzreihenalgebren, Arch. der Math. 28 (1977), 51–54.CrossRefzbMATHGoogle Scholar
  9. 9.
    J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318–344.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N. Mohan Kumar, On a question of Bass and Quillen, preprint, Tata Institute, 1976/77Google Scholar
  11. 11.
    M.P. Murthy, Projective A[x]-modules, J. London Math. Soc. 41 (1966), 453–456.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M.P. Murthy and R.G. Swan, Vector bundles over affine surfaces, Invent. Math. 36 (1976), 125–165.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Ojanguren and R. Sridharan, Cancellation of Azumaya algebras, J. Algebra 18 (1971), 501–505.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    M. Raynaud, Modules projectifs universels, Invent. Math. 6 (1968), 1–26.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire Dubriel-Pisot, Exposé 23, 1957/58.Google Scholar
  17. 17.
    A.A. Suslin, Projective modules over a polynomial ring are free, Dokl. Akad. Nauk SSSR 229 (1976), 1063–1066 = Soviet Math. Dokl. 17 (1976), 1160–1164.MathSciNetzbMATHGoogle Scholar
  18. 18.
    A.A. Suslin, A cancellation theorem for projective modules over algebras, Dokl. Akad. Nauk SSSR 336 (1977), 808–811 = Soviet Math. Dokl. 18 (1977), 1281–1284.MathSciNetzbMATHGoogle Scholar
  19. 19.
    A.A. Suslin, On stably free modules, Mat. Sb. 102 (144) (1977), 537–550.MathSciNetzbMATHGoogle Scholar
  20. 20.
    A.A. Suslin, Orbits of the group SL3 and quadratic forms, preprint LOMI, Steklov Institute, 1977Google Scholar
  21. 21.
    A.A. Suslin, Reciprocity laws and stable range in polynomial rings, preprint LOMI, Steklov Institute, 1978.Google Scholar
  22. 22.
    R.G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    R.G. Swan, Topological examples of projective modules, Trans. Amer. Math. Soc. 230 (1977), 201–234.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    R.G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111–120.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    R.G. Swan and J. Towber, A class of projective modules which are nearly free, J. Algebra 36 (1975), 427–434.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    L.N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Funkcional. Anal. i Priložen. 5 (1971), 17–27 = Functional Anal. Appl. 5 (1971), 102–110.MathSciNetzbMATHGoogle Scholar
  27. 27.
    L.N. Vaserstein and A.A. Suslin, The problem of Serre on projective modules over polynomial rings and algebraic K-theory, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), 993–1054 = Math. USSR-Izv. 10 (1976), 937–1001.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • A. A. Suslin
    • 1
  1. 1.LomiLeningradUSSR

Personalised recommendations