Advertisement

K-theory of noetherian group rings

  • J. T. Stafford
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 734)

Keywords

Normal Subgroup Finite Group Prime Ideal Group Ring Projective Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. BASS, Algebraic K-theory, Benjamin, New York, 1968.zbMATHGoogle Scholar
  2. 2.
    D.R. FARKAS and R.L. SNIDER, Ko and Noetherian group rings, J. Algebra 42 (1976), 192–198.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    F.T. FARRELL and W.C. HSIANG, The topological — Euclidean space form problem, Inv. Math 45 (1978), 181–192.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    F.T. FARRELL and W.C. HSIANG, A formula for K1 Rα[T], Proc. Symp. Pure Math. vol. 17, (1970), 192–198.MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. GORDON and J.C. ROBSON, Krull dimension, Mem. Amer. Math. Soc. 133, (1973).Google Scholar
  6. 6.
    K.W. GRUENBERG, Relation modules of finite groups, Regional Conference Series in Math. No 25, Amer. Math. Soc., 1976.Google Scholar
  7. 7.
    P. HALL, Finiteness conditions for solvable groups, Proc. London Math. Soc. 4(1954), 419–436.MathSciNetzbMATHGoogle Scholar
  8. 8.
    G. KRAUSE, T.H. LENAGAN and J.T. STAFFORD, Ideal invariance and Artinian quotient rings, J. Algebra, to appear.Google Scholar
  9. 9.
    T.H. LENAGAN, Noetherian rings with Krull dimension one, J. London Math. Soc. 15 (1977), 41–47.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    P.A. LINNELL, Zero divisors and idemptotents in group rings, Proc. Camb. Phil. Soc. 81 (1977), No. 3, 365–368.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    B.J. MUELLER, Localisation in non-commutative Noetherian rings, Can. J. Math. 28 (1976), 600–610.CrossRefGoogle Scholar
  12. 12.
    D.S. PASSMAN, The algebraic structure of infinite group rings, Interscience, 1977.Google Scholar
  13. 13.
    J. E. ROSEBLADE, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc., 36 (1978), 385–447.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    D. SEGAL, The residual simplicity of certain modules, Proc. London Math. Soc. 34 (1977), 327–353.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    P.F. SMITH, On the dimension of group rings, Proc. London Math. Soc. 25 (1972), 288–302; Corrigendum, ibid.27 (1973), 766–768.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    P.F. SMITH, Localisation and the AR property, Proc. London Math. Soc. 22 (1971), 39–68.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    J.T. STAFFORD, Stable structure of noncommutative Noetherian rings, J. Algebra 47 (1977), 244–267.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    J.T. STAFFORD, Stable structure of noncommutative Noetherian rings II, J. Algebra, 52 (1978) 218–235.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    R.G. SWAN, Algebraic K-theory, Lecture Notes in Math. No 76, Springer-Verlag, Berlin / New York, 1968.zbMATHGoogle Scholar
  20. 20.
    R.G. SWAN, K-theory of finite groups and orders, Lecture Notes in Math. No 149, Springer-Verlag, Berlin / New York, 1970.zbMATHGoogle Scholar
  21. 21.
    R.G. SWAN, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111–121.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    R.G. SWAN, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–601.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    L. N. VASERSTEIN, On the stabilization of the general linear group over a ring, Mat. Sb. 79 (121) (1969), 405–424; translated as Math. USSR Sb. 8 (1969), 383–400.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. T. Stafford
    • 1
  1. 1.Department of MathematicsBrandeis UniversityWaltham

Personalised recommendations