Advertisement

Is the brauer group generated by cyclic algebras?

  • Robert L. Snider
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 734)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Albert, Structure of Algebras, Amer. Math. Soc. Coll. Pub. Vol. 24, Providence,Rhode Island, 1961.Google Scholar
  2. 2.
    S.A. Amitsur, On central division algebras, Israel J. of Math. 12(1972), 408–420.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S.A. Amitsur and D. Saltman, Generic abelian crossed products and p-algebras, J. of Algebra (to appear).Google Scholar
  4. 4.
    S. Bloch, Torison algebraic cycles, K2, and the Brauer group of function fields, Bull. A.M.S. 80(1974), 941–945.MathSciNetCrossRefGoogle Scholar
  5. 5.
    P.M. Cohn, Algebra II, John Wileym New York, 1977.Google Scholar
  6. 6.
    P. Deligne, Varieties unirationnelles non rationellos, Seminaire Bourbaki, Expose 402, Lecture Notes in Math., vol. 317, Springer-Verlag, New York, 1973.Google Scholar
  7. 7.
    S. Endo and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan, 25(1973), 7–26.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    D.R. Farkas, Miscallany on Bieberbach group algebras, Pacific J. Math. 59(1975), 427–435.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E. Formanek, The center of the ring of 3×3 matrices, Linear and Multilinear Algebra (to appear).Google Scholar
  10. 10.
    K.W. Gruenberg, Relation modules of finite groups, CBMS conference series, Vol. 25, American Math. Soc., Providence, Rhode Island.Google Scholar
  11. 11.
    K.W. Gruenberg,Cohomological topics in group theory, Lecture Notes in Math, Vol. 143, Springer-Verlag, New York, 1970.zbMATHGoogle Scholar
  12. 12.
    M. Hall, The Theory of Groups, Macmillan, New York, 1959.zbMATHGoogle Scholar
  13. 13.
    I.N. Herstein, Noncommutative Rings, John Wiley, New York, 1968.zbMATHGoogle Scholar
  14. 14.
    P. Linnel, Zero divisors and idempotents in group rings, Math. Proc. Camb. Phil. Soc. 81(1977), 365–368.MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Milnor, Introduction to Algebraic K-theory, Ann. of Math.Studies, no. 12, Princeton Univ. Press, Princeton, N.J., 1971.Google Scholar
  16. 16.
    J.P. Murre, Reduction of the proof of the non-rationality of a non-singular cubic threefold to a result of Mumford, Compositio Math. 27(1973), 63–82.MathSciNetzbMATHGoogle Scholar
  17. 17.
    S. Rosset, Generic matrices, K2, and unirational fields, Bull. A.M.S. 81(1975), 707–708.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    S. Rosset, Abelian splitting of division algebras of prime degrees, Comment. Math. Helvetici 52(1977), 519–523.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    J. Tignol, Sur les classes de similitude de corps a involution de degre 8, (to appear).Google Scholar
  20. 20.
    V.E. Voskresenskii, On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field Q(x1,...,xn), (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 34(1970), 366–375. English translation: Math. USSR-Izv. 4(1970), 371–380.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Robert L. Snider
    • 1
    • 2
  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburg
  2. 2.The Institute for Advanced StudiesThe Hebrew UniversityJerusalemIsrael

Personalised recommendations