Remarks on the projective dimension of ℵ-unions

  • Barbara L. Osofsky
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 734)


Direct Summand Projective Dimension Zero Divisor Projective Resolution Homological Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Auslander, On the dimension of modules and algebras. III: Global dimension, Nagoya Math. J. 9 (1955), 67–77.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    N. Chen, Global dimension of skew group rings, Ph.D. thesis, Rutgers University, 1978.Google Scholar
  3. [3]
    B. Osofsky, Homological dimension and the continuum hypothesis, Trans. Amer. Math. Soc. 132 (1968), 217–230.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B. Osofsky, Homological dimension and cardinality, Trans. Amer. Math. Soc. 151 (1970), 641–649.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    B. Osofsky, Hochschild dimension of a separably generated field, Proc. Amer. Math. Soc. 41 (1973), 24–30.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    B. Osofsky, Homological dimensions of modules, CBMS Regional Conference Series in Math. 12, Amer. Math. Soc., Providence, 1973.zbMATHGoogle Scholar
  7. [7]
    B. Osofsky, Projective dimension of "nice" directed unions, Journal of Pure and Applied Algebra, 13 (1978), 417–457.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. Pierce, The global dimension of Boolean rings, J. Alg. (1967), 91–99.Google Scholar
  9. [9]
    M. Raynaud and L. Gruson, Critères de platitude et de projectivité, Invent. Math. 13 (1971), 1–89.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Barbara L. Osofsky
    • 1
  1. 1.Rutgers UniversityNew Brunswick

Personalised recommendations